
The FL Project� The Design of a Functional Language

Alexander Aiken

Computer Science Division

University of California� Berkeley

Berkeley� CA ������	��

email� aiken�cs
berkeley
edu

John H
 Williams

IBM Almaden Research Center

�� Harry Rd

San Jose� CA ��	��

email� williams�almaden
ibm
com

Edward L
 Wimmers

IBM Almaden Research Center

�� Harry Rd

San Jose� CA ��	��

email� wimmers�almaden
ibm
com

Abstract

FL is the result of an e�ort to design a practical functional programming language based on Backus�

FP� This paper provides an introduction to and critique of the FL language� The language e�ort is

analyzed from several points of view� language design� implementation� and user experiences� Emphasis

is placed on the unusual aspects of FL� its strengths and weaknesses� and how FL compares with other

functional programming languages�

� Introduction

In his Turing Award paper� John Backus introduced a simple notation for functional programming called

FP �Bac���� The initial design of FP underwent considerable evolution in subsequent years �Wil��b�

Wil��a� Bac�	� HWWW�	� HWW�
� BWW�
� WW��� BWW��� HWW���� culminating in the de
nition

of FL �BWW����� Since the FL de
nition in ���� a substantial implementation e�ort has been underway

at the IBM Almaden Research Center to build an optimizing compiler for and to test the viability of

programming in FL�

This paper is about the design of� implementation of� and experience with the FL language� The

design of FL has been heavily in�uenced by FP and the philosophy set forth in �Bac���� The core of this

philosophy is expressed in the opening critique of conventional languages �Bac����

Programming languages appear to be in trouble� Each successive language incorporates�

with a little cleaning up� all the features of its predecessors plus a few more� � � � Each new

language claims new and fashionable features � � �but the plain fact is that few languages make

programming su�ciently cheaper or more reliable to justify the cost of producing and learning

to use them�

�

Thus the major goal of the FL design is to have a simple� yet �exible and useful� programming language�

Simplicity means avoiding any language features beyond the bare minimum needed to write realistic

programs� The motivation for such spareness is more than the usual desire to avoid duplication in the

language� In addition� there is the belief that a language�s semantics ought to be a useful everyday tool

for the programmer and that a semantic description is useful to programmers only if it is very simple�

The design of FL has been guided primarily by the desire for a simple and useful semantics� A principle

that has been adhered to throughout the project is that at each step of the design process the language

should have a full� formal denotational semantics� In fact the relative simplicity of various versions of the

language has been judged primarily by the relative simplicity of the denotational semantics�

With FP as a starting point� following these principles has led to a language with many unconventional

aspects� For example� FL has no static type system� because such a system would add a layer of complexity

to the language de
nition and make it harder to learn� This point contrasts with other functional

languages currently in use� most of which include static type systems as part of the language� Another

unusual feature of FL is
rst�class exceptions� FL has exceptions because it was considered necessary

to specify formally what happens in the event of a run�time error� such as division by zero� Most

other functional languages do not provide run�time exceptions� choosing instead to leave the behavior

of run�time errors unspeci
ed and implementation�dependent� Standard ML �HMT���� however� has an

exception mechanism similar in spirit to FL�s� Like ML� but unlike Haskell �HWA����� FL is a strict

language�

One desirable feature that is not a design goal of FL is e�ciency of compiled code� Not surprisingly�

as a result some features of FL are di�cult to compile well� The goal of the implementation e�ort has

been to see to what extent the simple� clean semantics of FL can be used as the basis for an optimizing

compiler that produces respectable code�

This paper gives an overview of three related topics� The
rst topic is a description of FL� Section �

gives a brief� informal description of FL together with numerous examples� This section is intended to

acquaint the reader with the syntax and style of FL programs without going into details� Section �

presents the formal syntax and semantics of FL� Because FL is a small language� this section fairly

presents almost everything there is to know about FL� For brevity� however� a few minor features are not

discussed� the interested reader is referred to �BWW�����

The second topic is a critique of FL on the subjects of syntax� types� input�output� exceptions and

order of evaluation� FL is very di�erent in each of these respects from most other functional languages�

The purpose of Section � is to highlight these di�erences� explain why FL is di�erent� and to assess the

impact of these di�erences�

The third and
nal topic is an overall assessment of what it is like to program in FL� Many FL

applications�including some large applications�have been written and it is now possible to make some

judgements about what works and what doesn�t work in the language and the implementation� Section 	

relates the lessons learned from FL programming�

�

� A Brief Description of FL

This section provides an informal description of FL with examples� In presenting the examples� language

constructs are used without giving complete de
nitions in the hope that seeing a few sample programs

will serve to give the �avor of the language without requiring lots of text� Each example consists of a

program� an example of its use� and some brief comments if necessary� A formal de
nition of FL is given

in Section ��

��� Function Level Programming

FL is designed to be a programming language in which it is easy to write clear and concise programs� The

language design is based on the tenet that clarity is achieved when programs are written at the function

level�that is� by putting together existing programs to form new ones� rather than by manipulating

objects and then abstracting from those objects to produce programs� This premise is embodied in the

name of the language� Function Level� The emphasis on programming at the function level results in

programs that have a rich mathematical structure and that may be transformed and optimized according

to an underlying algebra of programs�

For example� consider how a program SumAndProd � which computes the sum and product of two

numbers� is de
ned in a language based on the lambda calculus� One begins with the objects x and y�

constructs the object hx � y� x � yi �note that sequences are written hx�� ���� xni �� and abstracts with

respect to x and y giving a program�

def SumAndProd � ��x� y��hx� y� x � yi

In contrast� in FL one begins with the functions � and � and applies the combining form construction

�written � ��� Construction is de
ned so that for any functions f�� ���� fn� the function �f�� ���� fn� applied

to x produces the n element sequence whose ith element is fi applied to x�

�f�� ���� fn��x � hf��x� ���� fn�xi

�Note that the application of f to x is written f�x�� This results in the function level de
nition

def SumAndProd � ��� �� ���

A simple example of the use of SumAndProd is given below� Throughout this section� the � relation

indicates one or more steps in the reduction of a combinatorial expression to its value�

SumAndProd�h�� �i

� ��� ���h�� �i

� h��h�� �i� ��h���ii

� h�� �i

�

The next example illustrates how composition �written � � can be used to create new functions from more

primitive ones� �In general si is the primitive function that selects the ith element of a sequence� and tl

is the primitive function that returns all but the
rst element of a sequence�� In the following second is

de
ned to be the same as the primitive s��

def second � s� � tl ���

second�h�� �� �i

� �s� � tl��h�� �� �i

� ���hs�� tli��h�����i

� s�� �tl�h�� �� �i�

� s��h�� �i

� �

Example ��� shows a simple use of in
x notation in expressions� The functional � �which is de
ned so

that ��� hf� gi��x � f� �g� x� � is applied to the two arguments s� and tl � In general� f op g means

op�hf� gi�

The following factorial program introduces some new combining forms as well as recursion�

def fact � id � �	� ��� id � �fact � sub�� ���

fact��� ��	

The function fact is built by applying the combining forms composition � � �� constant � � � and conditional

to the functions �� id� � and the �recursive� function name fact � As noted above� composition is de
ned

so that �f � g��x � f� �g�x� � Constant is de
ned so that �x�y � x �provided y terminates and is not an

exception�see Section ����� and conditional is de
ned so that �p� f� g��x � f�x if p�x is true� and g�x

if p�x is false� Thus� fact�� reduces to � � �fact��� �since � � 	 is false�� fact�� reduces to � � �fact����

etc�

One unusual aspect of the �FL style� of programming is that explicit recursion is avoided� Closed�form

de
nitions using primitive recursive functions are preferred� such as�

def fact � � � intsto ���

�� � intsto���

� �� �intsto���

� ��h�� �� �� �� �i

� ��	

The function intsto �for �integers up to�� is a primitive such that intsto�n � h�� ���� ni for a non�negative

integer n� Note that � maps a sequence of numbers into the product of those numbers �for the empty

sequence multiplication is de
ned so that ��hi � � ��

�

There are two main advantages to such a programming style� First� termination proofs become very

simple� The primitive recursive combining forms preserve termination� that is� they are guaranteed to

terminate if their function arguments are themselves terminating� Second� programs are arguably easier

to understand since the inductive structure of the computation is in general simpler and more explicit�

The former advantage is useful for an optimizing compiler� because some interesting optimizations of FL

programs are valid only if functions are known to terminate for all arguments�

Another example of closed�form programming is the following program to compute the length of a

sequence�

� � ���� �	�

�� � ������ha� b� ci

� ��������ha� b� ci�

� ��h���a� ���b� ���ci

� ��h�� �� �i

� �

This program works by simply replacing each element of the sequence by a � and then adding them up�

The functional � �called map in many other languages� is de
ned so that ���f��hx�� ���� xni � hf�x�� ���� f�

xni� Note that ��� associates to the left �i�e�� x�y�z � �x�y��z � so that �����a means �������a�

A fancier example of closed�form programming is the following O�n log n� sorting program�

def sort � tree�hmerge� hii � �� �id� �
�

sort�h
� �� ���i

� �tree�hmerge� hii � �� �id���h
� �� �� �i

� tree�hmerge� hii� ��� �id��h
� �� ���i�

� tree�hmerge� hii�hh
i� h�i� h�i� h�ii

� merge�hmerge�hh
i� h�ii�merge�hh�i� h�iii

� merge�hh��
i� h���ii

� h�� �� ��
i

The function tree takes a function and an object and produces a function such that tree�hf� zi�hx�� ���� xni

rewrites to z if n � 	 � x� if n � � � and f�htree�hf� zi�hx�� ���� xmi� tree�hf� zi�hxm��� ���� xnii if n � � and

m � dn��e� The function merge merges two sorted sequences of numbers into a single sorted sequence� e�g��

merge�hh�� �i� h�����ii� h�� �� �� ���i� Notice that �� �id� maps an n�element sequence into a sequence of

n singleton sequences� This ensures that merge is applied to a pair of sequences in the base case�

��� Higher�Order Functions

FL programs may be higher�order� In addition to the primitive combining forms mentioned so far� the

language includes mechanisms for de
ning new higher�order functions�

	

There is a primitive function lift for raising functions to functionals� The de
nition of lift is

lift�f�hg�� � � � � gni � f � �g�� � � � � gn�

lift is useful for writing closed�form� combinatorial de
nitions of higher�order functions� In fact� lift

is so useful that it has a special notation f� � lift�f�

Lifting can be used to convert a
rst�order function into a combining form� For example� cat is a

function that concatenates sequences together� Thus� cat� is a functional that combines sequence�valued

functions into a new sequence�valued function� An FL string �xyz� stands for a sequence of characters

h x� y� zi� Consider the following program that appends the string �Hello � to the front of an argument

sequence�

��Hello � cat� id ���

���Hello � cat� id���World�

� cat��h��Hello �� idi��World�

� �cat � ���Hello �� id����World�

� cat�h��Hello ���World�� id��World�i

� cat�h�Hello �� �World�i

� �Hello World�

Another important way of de
ning higher�order functions in FL is by currying� FL has a primitive

currying combinator C de
ned so that

C�f�x�y� f�hx� yi ���

For example� the function C�� maps a number x to a function that takes a number y and returns x � y�

An increment function can be de
ned as follows�

def inc � C���� ���

inc��

� C������

� ��h�� �i

� �

��� Scope

FL is a statically scoped language� An FL program consists of an expression together with a list of

de
nitions to be used in evaluating that expression� A de
nition list entry may itself be a nested de
nition

list that exports only some of its de
nitions� This provides a convenient hiding mechanism which� together

with the facility for programmer de
ned data types� provides a technique for making encapsulated type

de
nitions �see Section �����

The following program uses a subsidiary de
nition to compute the average of a sequence of numbers�

def ave � � � length where

fdef length � � � ����g
����

ave�h�� ��
i

� �� � length��h�� ��
i

� ��h��h�� ��
i� length�h�� ��
ii

� ��h��� �i

� �

Any expression �in this case the right�hand side of the de
nition of ave� can have an associated environ�

ment of function de
nitions� In this expression� the associated environment is the singleton environment

de
ning length� Such de
nitions are local�their scope of de
nition is limited to the expression to which

they are attached�

��� Exceptions

Exceptions� including run�time errors� occur in practice in any programming language� so some facility for

reporting them is required� For certain applications� such as operating systems that control the execution

of other processes� error handling is essential� Errors and error handling are an integral part of FL� FL

provides error handling in a purely functional manner�

The domain of FL values is subdivided into the normal and the exception values� Semantically�

exception values are treated di�erently than normal values� All functions are strict with respect to

exceptions� so that f� x � x for all functions f and exceptions x� Sequences are also strict with respect

to exceptions� a sequence collapses to the leftmost exception it contains� so that hx� yi � x if x is an

exception� This behavior is justi
ed by the intended use of errors in FL� errors represent a situation in

which something extraordinary has happened and therefore an error should persist until caught or until

it escapes from �and becomes the result of� the program�

Exceptions can be raised by primitive functions� For example� the meaning of division by zero is an

exception�

��h�� 	i� Exc�h���� �arg��� h�� 	ii�

Recall that a string �xyz� stands for the sequence of characters h x� y� zi� In general� if a primitive

function f is applied to an inappropriate argument x� then f� x evaluates to an exception of the form

Exc�h�f�� �arg��� xi��

Most programming languages make a distinction between �run�time errors� �such as division by zero�

and �compile�time errors� �such as type mismatches�� Exclusive of syntax errors� all errors are treated

uniformly in FL as exceptions� For example� adding a character and a number is not sensible� In FL�

the primitive function � is de
ned so that it works as expected on sequences of numbers and returns an

�

addition exception for all other arguments� Thus� using the program in example �����

ave�h�� ai

� ���length��h�� ai

� ���h��h�� ai� length�h�� aii

� ��hExc�h�� �� �arg��� h�� aii�� length�h�� aii

� ��Exc�h� � �� �arg��� h�� aii�

� Exc�h� � �� �arg��� h�� aii�

All FL primitives raise exceptions if applied to inappropriate arguments� This makes FL a secure language

�App���� An FL program never �dumps core� or otherwise terminates without returning a valid FL value�

There is a special primitive signal such that signal � x � Exc�x� for any normal value x� This

provides the programmer with a way to raise exceptions directly� In addition� there is a higher�order

primitive function catch for catching and handling exceptions� The function catch takes as arguments

two functions� a body and a handler� Informally� catch� hbody� handleri�x evaluates body�x� If body�x is

not an exception� the result is body�x� If body�x is an exception Exc�y�� then the result is the handler

applied to a pair consisting of x and the contents y of the exception� Note that this description of catch

is purely functional� The functionality of catch is easily understood with an example� A safe division

function that returns � if division fails can be written as follows�

def safediv � catch�h�� �	i ����

safediv�h�� �i

� catch�h�� �	i�h�� �i

� � since ��h�� �i� �

Thus� safediv is exactly like � in the normal case� However�

safediv�h�� 	i

� catch�h�� �	i�h�� 	i

� �	�hh�� 	i� h���� �arg��� h�� 	iii since ��h�� 	i� Exc�h���� �arg��� h�� 	ii�

� 	

A formal de
nition of catch is given in Section ����

��� Input�Output

FL is an interactive language� In order to accommodate interactive input and output and to facilitate the

writing of programs that require persistent storage� all FL programs are required to map pairs into pairs�

The
rst component of the pair can be any FL value� but the second component is always a history� an FL

sequence that contains the current value of the
le system and the current status of all input and output

devices� Thus� the true functionality of any FL program f is f� hval� historyi � hval�� history�i� In

the examples �������� the history component has been omitted�

�

Most primitive functions are completely independent of the history component and leave it unchanged�

For example� tl� hh�� �� �i� historyi � hh�� �i� historyi no matter what the contents of history may

be� A few of the primitives depend on the contents of history but do not change the
le system or

the status of any device� e�g�� get retrieves the most recent
le system from the history � Finally�

some primitives both depend on the contents of the history and alter it� e�g�� in maps hdev� historyi to

hnext inp� history�i� where next inp is the next value from device dev and the history is changed to

re�ect the fact that dev has been read�

It is important to note that without the history as part of its argument� a primitive such as in could

not be a function� since in�reader could return di�erent values depending on when it is called� Including

the history permits a functional treatment of input�output and
le system fetches� Of course� this implies

that all functions must map pairs to pairs� even programs such as tl that don�t depend on the history�

However� if the history component were to be added explicitly� it would then be possible to treat it like

any other object and thus to make multiple copies of it and to apply di�erent operations to the various

copies� Such manipulations would not be consistent with the intended use of the history component as

representing the current status of the I�O devices and the
le system�

Therefore� some methodology is required whereby exactly one history is in existence at any given

time� This is accomplished in FL by making the history component implicit� There is no possibility of FL

programs treating the history in a way inconsistent with the methodology� since the history component

may be accessed or changed only by built in primitives such as in and out� and these primitives are

guaranteed to preserve the consistency of the history component�

Whenever possible in this paper the history component is not mentioned explicitly� For example� tl

is described as though it simply mapped values to values� This suppression of the history component

except where necessary for understanding a program is the result of an attempt to reintroduce the notion

of an underlying state into an otherwise basically functional language in a disciplined way� Since ���

when implicit I�O was developed� the approach has been generalized by the use of monadic I�O� see

Section ����

The following interactive program prompts for two numbers and prints their sum�

def adder � answer �� � getnums

where f

def answer � out screen � ���sum � � cat� int�string�

def getnums � �prompt � ��Enter a�� prompt � ��Enter b��

def prompt � in � ��keyboard� � out screen

def out screen � out � ���screen�� id�

g

�

adder��x�

� �answer �� � getnums���x�

� answer� ����getnums��x���

� answer� ���hprompt��Enter a�� prompt��Enter b�ii�

� answer� ���h�� prompt��Enter b�i� Enter a appears on the screen

and the user types �

� answer� ���h�� �i� Enter b appears on the screen

and the user types �

� answer��

� �out screen � ���sum � �cat�int�string����

� out screen� �cat�h��sum � ���� int�string��i�

� out screen� �cat�h�sum � �� ���i�

� out screen��sum � ��

� �out � ���screen�� id����sum � ��

� out�h�screen�� �sum � ��i

� h�screen�� �sum � ��i sum � � appears on the screen

��	 Patterns

The following program is similar to the �safe� divide in example ����� The di�erence is that if the

argument is not appropriate then an informative exception is returned�

def newdiv� � ispair�

���isnum � s��� �isnum� �not � iszero�� � s�� �

s��s��

diverr��

diverr

def diverr � signal � ���newdiv�� ��arg��� id�

This program
rst checks that its argument is a pair� then that the
rst element of the pair is a number

and the second element of the pair is a non�zero number� if so� it divides the
rst by the second� otherwise

it returns an exception saying that newdiv aborted when applied to its
rst argument�

newdiv��h
� �i � �

newdiv��h
� �� �i � Exc�h�newdiv�� �arg��� h
� �� �ii� since h
� �� �i is not a pair

newdiv��h
� 	i � Exc�h�newdiv�� �arg��� 	i� since s��h
� 	i� 	

Such nested conditionals arise so frequently in practice that FL provides a primitive function pcons

�predicate construction� with special syntax �������� ��p�� ���� pn�� � hx�� ���� xmi is true if n � m and pi �

��

xiistrueforall�� i � n� and false otherwise� Thus newdiv� can be written more succinctly�

def newdiv� � ��isnum� �isnum� not � iszero��� � s��s�� diverr ����

Modern functional programming languages permit the naming of arguments to enable more mnemonic

expressions than s��s�� The following program is equivalent to newdiv� but uses a pattern to create

function names for the arguments�

def newdiv� � ��n�� m����

���isnum � n�� �isnum� not � iszero� � m� �

n�m�

diverr��

diverr

newdiv��h
� �i � �

newdiv��h
� �� �i � Exc�h�newdiv�� �arg��� h
� �� �ii� since h
� �� �i fails to match the pattern ��n�� m���

newdiv��h
� 	i � Exc�h�newdiv�� �arg��� 	i� since �not � iszero � m��h
� 	i� false

The pattern mechanism is de
ned so that newdiv� is just a notational shorthand for newdiv� � That

is� the pattern ��n�� m��� produces a predicate that tests for the structure of the pattern �ispair in this

case� and also de
nes the function names indicated by ��� �n and m in this case� to be selector functions

that correspond to their places in the structure �in this case s� and s� respectively�� These function

de
nitions are local� their scope is limited to the arms of the conditional�

Notice that patterns are treated as an extension of predicate construction� consistent with the FL

design philosophy of adding as few new constructs as possible� The pattern ��n�� m��� is actually shorthand

for ��n�tt� m�tt��� where tt is the everywhere true predicate� see Section ����� for a critique of this design�

Using the full power of patterns results in the following equivalent version of newdiv�

def newdiv� � ��n�isnum� m��isnum� not � iszero��� � n�m� diverr ����

newdiv��h
� �i � �

newdiv��h
� 	i � Exc�h�newdiv�� �arg��� 	i� the pattern fails since �not � iszero��	� false

Again� the pattern mechanism is de
ned so that newdiv� is exactly equivalent to newdiv� � To match

a pattern with embedded predicates� not only must the argument have the proper structure� but its

�sub�components must pass the corresponding predicates as well� This ability to embed predicates in

patterns greatly increases the usefulness of the pattern matching mechanism for writing terse� easy to

read function de
nitions� Note that the precedence of the in
x operators � � � � and � is such that

m�isnum� not � iszero means m��isnum � �not � iszero���

The
nal version of newdiv uses a special notation for de
ning a pattern on the argument of a

user�de
ned function�

def newdiv� ��n�isnum� m��isnum� not � iszero��� � n�m ����

��

newdiv��h
� �i � �

newdiv��h
� 	i � Exc�h�newdiv�� �arg��� 	i�

The shorthand notation used in newdiv� is exactly equivalent to newdiv�� In general� in a de
nition

def f pat � e� if an argument x fails to match pat then an exception of the form Exc�h�f�� �arg��� xi�

is generated� This notation provides a convenient way for programmers to specify where informative

exceptions should be produced�

��
 Data Types

FL has user�de
ned data types� New data types are implemented as tagged objects of an underlying

representation type� The language is designed so that all such tagged objects are initially in the domain

of FL values� thus giving the programmer a convenient� concrete way of thinking about and manipulating

data types� Moreover� these tagging operations can be hidden using the scoping mechanism� thereby

providing a capability for abstract data type de
nitions�

In keeping with the function�level programming paradigm� data types are speci
ed by their charac�

teristic functions� The programmer supplies a predicate that is true for values that represent elements of

the type and is false for all other values� For example� consider an employee record with two
elds� one

for an employee�s name and one for an employee�s department� An FL data type de
nition for such a

record is

type emp � ��isstring� isstring�� ��	�

This type de
nition de
nes three functions� a constructor mkemp that maps pairs of strings to elements

of emp� a destructor unemp that maps elements of emp to pairs of strings� and a predicate isemp that is

true for emp values and false for all other values� An element of data type emp with contents x is denoted

� emp� x 	 �

mkemp�h�Williams�� �K���i � � emp� h�Williams�� �K���i 	

isemp�h�Williams�� �K���i � false

�isemp � mkemp��h�Williams�� �K���i � true

�unemp � mkemp��h�Williams�� �K���i � h�Williams�� �K���i

mkemp�h�� �i � Exc�h�mkemp�� �arg��� h�� �ii� since h�� �i is not a pair of strings

To manipulate data types the FL programmer writes functions that work on the representation� For

example� selectors for the name and department
elds can be de
ned as follows�

def name isemp � s� � unemp

def dept isemp � s� � unemp

name�� emp� h�Williams�� �K���i 	 � �Williams�

dept�� emp� h�Williams�� �K���i 	 � �K���

dept�h�� �i � Exc�h�dept�� �arg��� h�� �ii� since isemp�h�� �i� false

��

Note that in the de
nitions of name and dept the predicate isemp is used as a guard on the left�hand

side� This notation has the same meaning as when a pattern is used on the left�hand side �Section ��
�

except that no function de
nitions are made�

An alternative de
nition of the data type emp uses a pattern in the type predicate� When a pattern

is used to de
ne a data type� the functions de
ned by the pattern become selector functions for the data

type�

type emp � ��name�isstring� dept�isstring�� ��
�

This type de
nition de
nes mkemp� unemp� isemp�name� and dept exactly as above�

� A Formal De�nition of FL

This section provides a formal de
nition of the syntax and semantics of FL� Section ��� gives a grammar

for the subset of the language used in this paper and provides a brief discussion of the syntax� Section ���

describes the FL semantic domain� Finally� Section ��� gives a meaning function that assigns elements of

the semantic domain to FL programs� Readers less interested in the formal de
nition of FL may wish to

skip ahead to Section �� which contains a commentary and comparison with other languages� returning

to this section only as needed to clarify the subsequent discussion�

��� Syntax

An FL grammar is given in Figure �� The grammar is written using a mostly�conventional BNF syntax�

the conventional notations used in Figure � are�

nonterminal nonterminals are in italic font

terminal terminals are underlined in bold font

��� de
nition symbol

j alternatives

In addition there are non�standard notations convenient for specifying sequences� FL�s prime notation�

optional syntax� and grouping�

x�p zero or more elements of type x separated by p

x�p one or more elements of type x separated by p

�p� �p� �p� !p �� �� �� !with zero or more primes

d� � �e optional item

f� � �g grouping

construct
small italics

small italics is a comment describing �construct�

Uses of f� � �g are potentially ambiguous because curly braces are used both in FL environments and as

meta�symbols of the grammar� To emphasize the distinction� uses as FL syntax are written f � � �g� which

is consistent with the notation for terminal symbols�

��

The grammar in Figure � is only a subset of the the full FL language� The omissions are three

additional productions for more general forms of patterns� one environment operator� one additional

form of function de
nition� a form of lambda abstraction� and approximately a dozen productions for

de
ning assertions� a kind of formal comment �BWW����� The more general forms of patterns are used

in practice� but infrequently� The other omitted features are rarely used�

To complete the de
nition of FL syntax it is necessary to describe its lexical structure as well as

precedence rules for in
x notation� FL is unremarkable in both respects� so a brief� informal description

should su�ce� The lexical units of FL not de
ned in Figure � are numbers� identi
ers� and operators�

Identi
ers are strings over letters� numbers� and some special characters � "� #� �� �� Identi
ers begin

with an identi�er letter� which is any of the usual Roman letters plus the special characters� Numbers

begin with a number or a pre
x � or
� FL has a
xed set of operator names such as ��
� ���� ���� and

�� Except for unary � and
 in numbers� operators always stand for themselves and cannot be included

in numbers or identi
ers�

There are �	 levels of precedence for in
x and unary operators in FL� Precedence is
xed and cannot

be changed by the programmer� A consequence of this is that all programmer�de
ned function names

have the same precedence when used in in
x expressions�

Although simple� the lexical structure and precedence rules of FL have some annoying problems�

These problems are discussed as part of a general critique of FL syntax in Section ����

��� The Domain

The FL semantic domain is de
ned in a standard way as the solution of a system of recursive equations�

The proof that these equations have a solution is straightforward using standard techniques �Sto����

Before presenting the domain equations a few de
nitions are required� The FL domain� denoted DFL�

contains atoms� functions� sequences �written hx�� � � � � xni�� tagged pairs �written � i� x 	 where i is an

integer tag�� and exceptions �written Exc�x��� There is a partial order � on the elements of DFL such

that the following all hold�

� � x for all x

hx�� � � � � xni � hy�� � � � � yni
 xi � yi for all � � i � n

Exc�x� � Exc�y�
 x � y

� i� x 	 � � i� y 	
 x � y

f � g
 f � x � g � x for any functions f and g and for all x

Let X � DFL� An upper bound of X is an element y such that x � y for all x � X � The least upper

bound of X � written tX � is the least value y such that x � y for all x � X � The set X is directed if every

nite subset of X has an upper bound in X � A function f is continuous if f � �tX� � tx�Xf � x for

every directed set X �

FL functions map a �value� history� pair to another �value� history� pair� A history is a potentially

in
nite sequence of elements of DFL� The set of �nite histories consisting of
nite sequences of elements

��

expr ��� atom j name j seq j expr �p expr
application

j �expr� j exprp

primed expression
j cond j

!pexpr
constant

j �pexpr�� �
construction

j ��pexpr�� ��
predicate constr

j expr expr expr
in�x expr

j expr where expr

atom ��� character j number j true j false
truth values

seq ��� hexpr�� i j string

string ��� �character��

cond ��� expr�p exprd� expre j pat� exprd� expre

patlist ��� fpat expr�g
� pat f� pat exprg�

pat ��� name�dpat expre
elementary pattern

j ��patlist��
pat construction

pat expr ��� pat j expr

env ��� fdefn�g j export�name�� � env j hide�name�� � env j lib�string� j PF j

env uses env j env where env j env union env j fenvg

defn ��� def name dpat expre � expr j nrdef name dpat expre � expr j type identi�er � pat

name ��� identi�er j operator

Figure �� An FL grammar�

�	

of X is written X��� The set of in�nite histories consisting of in
nite sequences of elements of X is

written X�� The ordering on DFL is extended to value�history pairs as follows� �x� h� � �x�� h�� if ���

x �� and h is a pre
x of h�� or ��� x � x�� jhj � jh�j� and hi � h�i for corresponding elements hi� h
�

i of the

two histories�

The FL domain includes sequences� tagged pairs �to represent data types�� and exceptions� Notations

for these three kinds of values are given by the following de
nitions�

Seqs �X� � fhx�� � � � � xnijxi � X � n � �g

Tag�X� � f� i� x 	 ji � I � x � Xg

Exc�X� � fExc�x�jx � Xg

De�nition ��� The domain DFL is de
ned to be the solution of the following system of equations�

DFL � D�
FL � EFL

D�
FL � Atoms � Seqs �D�

FL�� Tag�D�
FL� � �DH �SH DH�

DH � DFL � �D�
FL��� � f�g � �D�

FL��

EFL � Exc�D�
FL

� � f�g

Atoms � Integers � Floats� Characters � ftrue� falseg

The function space X �SH Y is the set of continuous� strict and honest functions from X to Y � A function

f is strict if f � �e� h� � �e� h� for all e � EFL� A function f is honest if whenever f � �x� h� � �x�� h�� then

h is a pre
x of h��

The restriction of DFL to strict and honest functions is motivated by the following considerations�

FL incorporates I�O through an explicit history component that is manipulated by certain primitive

functions� This requires that the order�of�evaluation of FL expressions be speci
ed�otherwise� the order

of changes to the history would not be well�de
ned� If program semantics must depend on the order of

evaluation� then a strict semantics is preferable to a lazy one� because it is much easier for a programmer

to understand and predict the order of events� There are other reasons that FL is strict besides I�O�

these are discussed in Section ����

The restriction to honest functions stems from the desire to admit only functions that treat the history

component in a manner consistent with the view that the history is a record of all external events� Thus�

a history can be extended� but an event� once it occurs� cannot be modi
ed or removed from the history�

The honest functions only extend histories�

Finally� DH de
nes the set of valid �value�history� pairs� The structure of DH is determined by the

role of the history component� only an in
nite computation �i�e�� one whose meaning is �� can produce

an in
nite history� and any
nite computation can produce only a
nite history�

��� Semantics

Let the set of all functions names be N � An assignment is a mapping N � DFL � f"g� The value " is

used to denote a function name that has no binding� The meaning of an FL expression is given by two

�

functions

� � Expressions� Assignments� �D�
FL��� � DH

� � Expressions� Assignments � N � Assignments � f"g

Informally� � computes the meaning denoted by an expression while � computes the assignment denoted

by an expression� � is used to give meaning to environments of FL functions� The functions � and � are

meaningful only in the case that the assignment gives a non�" meaning to every free function name in

the expression�

����� The Function �

The meaning function � for expressions is given in Figure � � New notation used in Figure � is described

below� A point of potential confusion is that the same notation is used both for FL expressions and

semantics in applications f � x and sequences hx�� � � � � xni� Since expressions are written with a bold font

�i�e�� x��x� � and values with an italic font �i�e� x� � x�� the meaning is always clear from context� There

is no FL syntax for tagged pairs and exceptions�respectively � i� x 	 and Exc�x��so these notations

always denote values�

In Figure �� the notation e is shorthand for e where PF� This notation is used in cases where

FL syntax can be �desugared� into applications of primitive functions� To make clear where primitive

functions are meant one can write e where PF� which has the e�ect of binding free function names in

e to their primitive de
nitions �the environment PF stands for �primitive functions��� This degree of care

in the resolution of primitive function names is required because� in contrast with many other languages�

FL permits primitive function names to be rede
ned�

The following proposition gives the de
nition of FL function application�

Proposition ��� There is a function �� DFL � DH � DFL satisfying�

x � �y� h� �

�������
������

�x� h� if x � EFL

�y� h� if x � D�
FL
� y � EFL

�Exc�h�apply�� �arg��� hx� yii�� h� if x � D�
FL
� y � D�

FL
� x is not a function

x�y� h� otherwise

The meaning of � is the same as the meaning of the primitive function apply�

One auxiliary function is used in the de
nition of �� The function F turns an arbitrary expression x

into a function that applies the meaning of x to an argument�

F �x� V � � ���y� h��x � �y� h��� where ��x� V� h� � �x� h��

Note that F has the e�ect of delaying the evaluation of x until a second argument is supplied� The

operation � combines environments of function de
nitions and is de
ned in Section ������

��

��a� V� h� � �a� h� if a is an atom

��f � V� h� � �V �f�� h� if f is a function name

��hx�� � � � �xni� V� h� �

�
�hy�� � � � � yni� hn� if fy�� � � � � yng � EFL � �

�yj � hj� if fy�� � � � � yj��g � EFL � � and yj � EFL and j � n

where

�
h� � h

�yi� hi� � ��xi� V� hi��� for i � �� � � � � n

���c� � � �cn�� V� h� � �h c�� � � � � cni� h�

���x�� V� h� � ��x� V� h�

��x� �p x�� V� h� � ��apply
p

� hx��x�i� V� h�

���px� V� h� � ��K
p

� x� V� h�

���px�� � � � �xn�� V� h� � ��consp � hx�� � � � �xni� V� h�

����px�� � � � �xn��� V� h� � ��pconsp � hx�� � � � �xni� V� h�

��x�� V� h� � ��lift � x� V� h�

��p� x��x�� V� h� �

�
�cond � hy�� y�� y�i� h�� if fy�� y�� y�g � EFL � �

�yj � hj� if fy�� � � � � yj��g � EFL � � and yj � EFL and j � �

where

����
���

�y�� h�� � ��p� V� h�

�y�� h�� � ��x�� ��p� V �� V� h��

�y�� h�� � ��x�� ��p� V �� V� h��

��p�p x� V� h� � ��p�p x� signal � ���cond arm�� id�� V� h�

��p�p x��x�� V� h� � ��cond
p

� hp�x��x�i� V� h�

��x� � x�� V� h� �

�
y� � ��x�� V� h�� if y� �� EFL

�y�� h�� if y� � EFL

where �y�� h�� � ��x�� V� h�

��f �x� V� h� � ��x� V� h�

��f �� V� h� � �tt� h�

��x� x� x�� V� h� � ��x� � hx��x�i� V� h�

��x where E� V� h� � ��x� ��E� V �� V� h�

��e� V� h� � " if none of the above apply

Figure �� The function ��

��

The rest of this section provides commentary on the rather terse formal de
nition of � in Figure �� The

purpose of this commentary is both to explain the formal de
nition and to highlight some unusual aspects

of FL�s semantics� Judgements about the merits of the various features are postponed to Section ��

The function � gives FL a leftmost�innermost order of evaluation� For example� if a sequence contains

an element of EFL� the sequence collapses to the leftmost element of EFL in the sequence� The semantic

operator � is de
ned to be compatible with leftmost�innermost evaluation� thus� Exc�x� � Exc�y� � Exc�x��

FL provides special notation for the combining forms construction �� � ��� predicate construction �� � � � ���

conditional �� lifting �� constant !� and application � � These notations correspond to the primitive

functions cons� pcons� cond�lift�K and apply respectively� The special forms for cons� pcons� cond

and K are inherited from FP� The new notations for lift and apply are introduced because these functions

are used pervasively in higher�order FL programming�

The introduction of the special syntax for certain function names creates a problem with the prime

notation for lifting� Any function name can be lifted using a prime� for example� cons� � hf� gi applies

lifted cons to f and g� However� the prime notation doesn�t extend automatically to the special forms�

Thus� FL has additional syntax for lifting each of the special forms� � � � �� becomes �� � � �� � �� � � � �� becomes

��� � � � ��� etc� The semantic function translates this notation into applications of the appropriate primitive

functions�

In a conditional p� f� g � the predicate p may be a pattern� The semantics is such that any de
nitions

made by p are local to the expressions f and g �see Figure � and Figure ��� Note that p may not be a

pattern in the expression cond�hp� f� gi� Extending FL to include this case would require giving meaning

to sequences containing patterns� This would introduce a new semantic category into the language� since

a sequence containing a pattern is neither a simple sequence nor a pattern�

The syntax of FL also forbids any combination of lifting and patterns �see Figure ��� Since the

translation of x �p y� z should be condp� hx� y� zi for consistency� allowing priming and patterns would

also require admitting patterns in sequences� Beyond this problem it is not even clear what a pattern in a

lifted conditional should mean� �For example� do the de
ned selectors apply to the
rst curried argument

or the second$�

The de
nitions speci
ed by patterns are described by the function � �see Section ������� The predicate

speci
ed by a pattern is described by �� For an elementary pattern f�x� the predicate is just the function

x� The predicate after the dot may be omitted �i�e�� f�� in which case the predicate is the constant true

function tt� In a pattern construction ��p�� � � � � pn��� the predicate is pcons � hp�� � � � � pni� The primitive

pcons is de
ned so that the pcons�hp�� � � � � pni�hx�� � � � � xni is true if pi�xi is true for all i�

Finally� note that FL has a general in
x notation� Any function name can be used in
x without

special syntax�

��

����� The Function �

The meaning of FL environments is given by the function � in Figure �� The function � also serves to give

meaning to the function de
nitions made by patterns� Assignments are denoted V�W� � � �� The following

auxiliary functions on assignments are used in the semantics�

dom�V � � ff jV �f� �� "g

�V� � V���f� �

�
V��f� if V��f� �� "

V��f� otherwise

V� jV� �

�
V� � V� if dom�V�� � dom�V�� � �

unde
ned otherwise

�V� � X��f� �

�
" if f �� X

V��f� otherwise

�f � x��g� �

�
x if f � g

" otherwise

The assignment V� � V� is the union of V� and V� with clashes resolved in favor of V�� The assignment

V�jV� is a symmetric union of two assignments with disjoint domains� The assignment V� � X is V� with

domain restricted to X � Finally� f � x is an assignment de
ned at the single point f �

The rest of this section elaborates on the de
nition of � in Figure �� The
rst several clauses explain

the meaning of the various environment operators� The di�erence between e� where e� and e� uses e�

is that the former exports only the de
nitions of e� whereas the latter exports de
nitions from both e�

and e�� with clashes resolved in favor of exporting the de
nition in e�� PF is the environment of primitive

functions� PF is discussed further in Section ���� The environment lib��libname�� is the FL mechanism

for importing functions from a pre�compiled library of function de
nitions�

The semantics of function de
nitions is straightforward except for the use of patterns and the function

F on the right�hand side of de
nitions� Patterns are translated into a conditional where an appropriate

exception is generated in the case where the predicate fails� The function F is applied to guarantee that

the right�hand side of a function de
nition is in fact a function� For example� the de
nition def foo � �

is a valid FL function de
nition� The meaning of this function is F ��� � ��y� h��� � �y� h�� Thus� foo is a

function that returns Exc�h�apply�� �arg��� h�� xii� when applied to x� The function F is the identity on

functions� so if the right�hand side of a function de
nition is already a function then F does not change

it�

This mechanism for converting non�functions into functions may seem unnecessarily elaborate� An

obvious alternative is to try to forbid function de
nitions where the right�hand side is not a function

and thus avoid the use of F � This approach does not work for two reasons� First� because FL is a

strict language� a lazy operation like F is needed somewhere to give recursive equations non�trivial least

solutions� Second� there is a di�culty with I�O� To test whether the right�hand side of a de
nition is

a function or not� in general it is necessary to evaluate it� This cannot be done at compile�time if the

��

��e� where e�� V � � ��e�� ��e�� V �� V �

��e� uses e�� V � � ��e�� ��e�� V �� V �� ��e�� V �

��e� union e�� V � � ��e�� V � j ��e�� V �

��export�f�� � � � � fn� e� V � � ��e� V � � ff�� � � � � fng

��hide�f�� � � � � fn� e� V � � ��e� V � � �N
 ff�� � � � � fng�

��PF� � PF

��fdefn�� � � � �defnng� V � � least V � s�t�

����
���

V � � ���defn�� V�� j � � � j ��defnn� Vn��� V

Vi �

�
V if defni � nrdef � � �

V � otherwise

��def f � e� V � � f � F �e� V �

��nrdef f � e� V � � f � F �e� V �

��def f p � e� V � � f � F �p� e� signal � ���f����arg��� id�� V �

��nrdef f p � e� V � � f � F �p� e� signal � ���f����arg��� id�� V �

��type x � e� V � � W s�t�

���������
��������

W �isx� � cond � hhastag � ix� tt �� i

W �mkx� � cond � h	 � F �e� V �� tag � ix� ��y� h���Exc�h�mkx�� �arg��� yi�� h�i

W �unx� � cond � hW �isx�� untag � ix� ��y� h���Exc�h�unx�� �arg��� yi�� h�i

W �f� �

�
���e� V ��f�� �W �unx� if f � dom���e� V ��

" otherwise

��f �x� V � � f � id

����f�� � � � � fn��� V � � ����f�� V � j � � � j �n�fn� V ��� V

where ��i�fi� V ���f� �

�
���fi� V ��f�� � si if f � dom���fi� V ��

" otherwise

Figure �� The function ��

��

evaluation involves I�O� For example� consider the de
nition def foo � s��h�� adder�	i� where adder is

the function de
ned in example ���	�� The use of F in the semantics makes clear that the I�O happens

each time that foo is applied�

Type declarations simply add new functions to the environment� The type declaration type x � e

de
nes the functions mkx� unx� and isx as well as any selectors de
ned by e if e is a pattern� The tag

ix is selected by the implementation and is guaranteed to be unique even if there is another declaration

type x � e� in another scope� The function 	 is used to prevent I�O from taking place in the type

predicate �see the de
nition of 	 in Section ����� The motivation for this design is that types are intended

to be
xed sets of values� that is� the set of values that are elements of a type should not depend on

external state� For this reason� the function 	 is used to ensure that the de
nition of a type cannot

depend on the history component of the semantics�

Finally� the functions de
ned by a pattern are given by the last three clauses� An elementary pattern

f� or f�x de
nes f to be the identity� If f is embedded in a pattern construction �� � � � ��� then the de
nition

of f is composed with the appropriate selector function for f�s position in the pattern� Note that if a

pattern is given for a type de
nition that any selectors de
ned by the pattern are composed with the

destructor for that type�

��� Primitive Functions

The primitive functions of FL are exported by the environment PF� There are a lot of primitives�about

�	 in all� De
nitions of the more important primitives used in this paper are given in Figure �� In this

gure� it is assumed that x� y� xi and yi are elements of D�
FL

� that f � g� and fi are functions� and that i is

an integer� These de
nitions omit some cases� The missing cases are de
ned uniformly for all primitive

functions as follows� In an application f � x� if f or x is an exception or �� then the meaning of the

application is an exception or � by strictness� Otherwise� if f�x does not match the pattern in Figure �

for primitive f� then the meaning is Exc�h�f�� �arg��� xi�� For a second�order function f� x� y the rules

are the same� except that exceptions generated by the primitive have the form Exc�h�f�� �arg��� hx� yii��

The functions cond� catch� and gamma merit further discussion� It is well�known that a strict con�

ditional operator is problematic� since strictness requires that if p then q else r evaluate all of p� q�

and r � The desired behavior is� of course� that q should be evaluated only if p is true and r should be

evaluated only if p is false�

The FL function cond is strict �as are all FL functions� but the desired semantics is still achieved

because cond is a higher�order function� That is cond� hp� q� ri evaluates all of p� q and r� but in this

case p� q� and r are functions that are used to de
ne the conditional� When an additional argument is

supplied� cond�hp� q� ri�x� evaluates to q�x if p�x is true and r�x if p�x is false� �Note that truth is denoted

by any non�false� non�error value in FL� a convention adopted from Lisp�� Thus� a strict� functional

version of conditional can be had by making conditional a second�order function� The fact that cond is

a second order function in FL has a large impact on programming style� The function cond is the only

��

way to write a conditional in FL� Because conditionals are used heavily in programming� this essentially

forces FL programmers to write at the function level�

The function catch provides the only mechanism for catching and handling exceptions in FL� All FL

functions are strict with respect to exceptions� so that catch�Exc�x� � Exc�x�� Thus� it is not possible

to de
ne catch so that it simply can be composed with another function� i�e�� catch � f cannot handle

exceptions generated by f because catch is strict� The trick to de
ning a strict function that can handle

exceptions is to make it higher�order� Thus� catch is a function that takes two functions f and g and

produces a function that returns g�hx� yi if f�x � Exc�y� �recall Example ���� in Section �����

Both cond and catch are instances of a general technique for achieving desired functionality in a

strict language� the lesson is that functionality often can be hidden in the internals of a higher�order

function de
nition� A
nal example is 	� which suppresses I�O� Intuitively� 	 converts any function f into

a function that cannot perform I�O� If f does no I�O� then 	�f�x � f�x� If f does attempt to perform I�O�

then the result is a �gamma arg�� exception and the history is unmodi
ed� Note that the de
nition of 	

in Figure � is purely functional� The function 	 is used primarily in the language semantics to guarantee

that no I�O takes place as part of a user�de
ned type constructor� It is also used by programmers to

make explicit portions of programs that do not perform I�O�

� Commentary and Comparison With Other Languages

This section provides a wide�ranging comparison of FL with other languages as well as opinions on what

is good and bad about FL� The discussion is organized around four topics� syntax� types� I�O� and

exceptions� included in the discussion of exceptions are remarks on the order of evaluation in FL� These

topics are the main points of contrast between FL and other functional languages� Several speci
c items

are discussed under each general topic� The choice of items is ad hoc� but every item illustrates either

something especially unusual about FL� a particularly strong or weak point of the language design� or an

interesting relationship to other languages�

��� Syntax

FL programs are written at the function level�programs are formed from other programs using higher�

order combinators� For example� recall the program SumAndProd from Section � in which one begins

with an object hx�y� x�yi and abstracts over the variables of the object to obtain the program ��x� y��hx�

y� x � yi �

One advantage of the lambda�based approach is that the function �looks like� the answer� by inspect�

ing the form of the body of the lambda expression one can get an idea of the answer� i�e�� the expression

��x� y��hx�y� x�yi clearly returns a pair� the
rst component of which is a sum and the second component

of which is a product� On the other hand there are two apparent disadvantages to the object�level style

in this case� the size of the resulting program� and the need to name and reference the bound variables�

��

K � x � �y� h� � �x� h�

apply � �hf� xi� h� � f � �x� h�

comp � hf�� � � � � fni � �x� h� � f� � �� � ��fn � �x� h�� � � ��

cons � hf�� � � � � fni � �x� h�� � �hy�� � � � � yni� hn� where �yi� hi� � fi � �x� hi���

cond � hf�� f�� f�i � �x� h� �

�������
������

�y�� h�� if y� � EFL

f� � �x� h�� if y� � false

f� � �x� h�� otherwise

where �y�� h�� � f� � �x� h�

pcons � hf�� � � � � fni � �x� h�� �

���������
��������

�false� h�� if x �� hx�� � � � � xni

�yi� hi� if fy�� � � � � yi��g � �EFL � ffalseg� � � and yi � EFL

�false� hi� if �� � i � n�yi � false

�true � hn� otherwise

where �yi� hi� � fi � �xi� hi���

id � �x� h� � �x� h�

tt � K � true

� � K � false

	 � f � �x� h� �

�
�y� h� if f � �x� h� � �y� h�

�Exc�h�gamma�� �arg��� xi�� h� if f � �x� h� � �y� h��� h �� h�

� � f � �hx�� � � � � xni� h�� � �hy�� � � � � yni� hn� where �yi� hi� � f � �xi� hi���

catch � hf� gi � �x� h� �

�
�y� h�� if f � �x� h� � �y� h�� � y � D�

FL
� f�g

g � �hx� yi� h�� if f � �x� h� � �Exc�y�� h��

signal � �x� h� � �Exc�x�� h�

intsto � �i� h� � �h�� � � � � ii� h� if i � �

hastag � i � �x� h� �

�
�true � h� if x �� i� y 	

�false� h� otherwise

tag � i � �x� h� � �� i� x 	� h�

untag � i � �� i� x 	� h� � �x� h�

si � �hx�� � � � � xni� h� � �xi� h� if n � i

Figure �� Some elements of PF�

��

The FL version of this program ��� �� accomplishes the same thing at the function level by providing

syntax for the function cons that parallels the syntax for sequences h� � �i� resulting in a shorter expression

without �junk references�� For a more complete discussion of the advantages of programming with a

carefully selected collection of combining forms with rich algebraic properties� see �Bac��� Wil��b��

These advantages notwithstanding� FL syntax is peculiar� particularly to programmers who are fa�

miliar with other functional languages� Some of the peculiarity is super
cial� people who use FL for the

rst time often are surprised at how easy it is to write FL programs� Still� FL�s syntax appears to have

more problems than merits� A few of each are discussed in this section�

����� Prime Notation

While FL�s combining forms facilitate the writing of
rst�order functions� writing higher�order functions

is less convenient� FL�s prime notation is an attempt to make higher�order combinator expressions �look

like� the values they compute�

Consider a function �f� g�� The lambda calculus version of this function is �x�hf x� g xi �function

application of f to x in lambda calculus is written as the juxtaposition f x�� To abstract over f in the

lambda expression one writes �f��x�hf x� g xi� To do this in FL� it is necessary to write a combinator

that� when applied to f � evaluates to �f� g�� One way to do this is to write�

cons � �id� �g�

To see that this works� apply it to f�

�cons � �id� �g���f

� cons�hid�f� �g�fi

� cons�hf� gi

� �f� g�

This program isn�t awful� but it isn�t easy to read� A better version uses lifted construction�

��id� �g�

Now it is clear what the result of the function will be� a lifted construction returns a construction� the

argument is substituted for id � and �g is replace by g� This de
nition is equivalent to the previous one

since

��id� �g� � lift�cons�hid� �gi � cons � �id� �g�

The next step is to abstract the program again with respect to g �i�e�� �g��f��x�hf x� g xi �� One

solution is�

� � ��cons� cons � ��id� id��

This program is awful�it is not at all clear at a glance what this program does� With prime notation�

one can write

����id� K�

�	

The double prime says that the result is a construction after two arguments are supplied� �id throws

away the
rst argument and keeps the second� K throws away the second argument and keeps the
rst�

It is straightforward to show that this program is equivalent to the unreadable one above�

To new FL programmers this kind of programming is usually mysterious� but experienced users

become surprisingly adept at reading and writing functions using prime notation� In short� the prime

notation provides a concise and fairly readable notation for writing higher�order combinators� It is not

as readable as the lambda calculus� but it is vastly superior to an unsugared combinator language� An

open question� are FL�s conveniences at the function level worth the inconveniences of priming at higher

levels$

����� In�x Notation and Precedence

Most contemporary functional languages support in
x notation� The favored strategy �adopted in ML

and Haskell� is to provide a special form for declaring certain names to be �in
xable� along with a

precedence level� which is usually an integer in the range ���� Some primitive functions are automatically

in
x operators with pre�speci
ed precedences�

In contrast� FL has a general in
x notation and no precedence declarations� Any FL expression

x� x� x� means x�� hx�� x�i� This is quite convenient� since a programmer may use an operator in
x�

pre
x� or any combination of the two� even in the same expression� Other advantages are that the rules

are simple and easy to remember and no new kind of declaration is introduced into the language�

A problem with general in
x comes up in printing expressions� because the printer must make an

arbitrary decision whether to display a function of two arguments pre
x or in
x� A reasonable solution

is to print all primitive operations that are normally in
x �e�g�� ���� �� etc�� in
x and all user�de
ned

functions pre
x�

Unfortunately� general in
x notation does not come for free� General in
x uses up a language�s most

valuable lexical unit� the blank� In most functional languages� a blank denotes function application� e�g��

f x y is f applied to x and y� In FL� f x y is in
x application of x� Thus� the cost of general in
x is that

another notation is required for application� this is why ��� is used to denote function application in FL�

General in
x notation works reasonably well for
rst�order expressions� where the most common in
x

application is function composition� In higher order FL expressions� however� plain function application

is used at least as often and usually much more often than in
x� The experience with FL programming

is that it is often di�cult to write FL programs that are not cluttered with ��� symbols� In retrospect�

although general in
x is a nice idea� it doesn�t pay its weight in practice�

A general problem with in
x notation that FL shares with other functional languages is precedence�

FL has �	 levels of precedence for the unary and in
x portions of the grammar� This has proven far

too much to expect FL programmers to remember� let alone use� The following example shows a typical

FL programming error involving precedence� Assume one wants to write f � g� where g � x � y� z is a

conditional� Then f � x� y� z does not parse as desired� since � binds more loosely than �� �A correct

�

version is f � �x� y� z��� The same problem exists for z and compositions trailing the conditional� Since

FL has no static type checking� the
rst hint of a problem is normally a run�time exception �in the absence

of program analysis�see Section ������� Usually the exception helps the programmer to
nd the error

almost immediately� but occasionally substantial time is lost searching for precedence mistakes�

Although FL has more levels of precedence than other functional languages� FL is probably no worse

in practice� This is because FL programmers have di�culty remembering and applying more than a

small handful of the precedence rules anyway� so �� levels would not be better than �	� The solution

most programmers adopt is to keep function de
nitions small by making many subsidiary de
nitions�

This style helps to make programs readable �if informative function names are chosen� and reduces the

opportunities for a precedence mistake�

����� Special Notation

FL has a lot of special notation adopted from FP� FP is a
rst�order language� with user�de
nable
rst�

order functions and a
xed set of second�order functionals �the combining forms�� Because of the special

role of the combining forms� it is reasonable that FP has a special notation for each� This design doesn�t

work so well in FL� FL is a higher�order language in which programmers can de
ne new second�order

�and higher order� functionals� With
rst�class higher�order functions� giving special notation to a few

functions seems arbitrary� It also complicates parsing unnecessarily�

Another problem with FL�s special notation is that some of it is too economical�i�e�� a one character

change can result in a valid� but completely di�erent� program from the one intended� The hardest FL

programming error to
nd is an example of this phenomenon� Recall that an elementary pattern has the

form f�p� where f is a function name and p is a predicate� This pattern de
nes a predicate that matches

values for which p is true� If p is just tt �that is� the pattern should match any value� then FL provides

a convenient shorthand f� that means the same thing� For example ��f�� g��� is a pattern matching all

pairs� f is a selector s� for the
rst component and g is a selector s� for the second component� As

discussed in Section ��
� allowing embedded predicates in patterns is a powerful feature and is very useful

in eliminating nested conditionals�

However� consider what happens if a ��� is omitted� The pattern ��f� g��� is still syntactically well�

formed� But now f is just a free function name and resolves to whatever de
nition is visible in the current

scope� If one is lucky� f is not de
ned and a syntax error results� Unfortunately� because programmers

tend to reuse the same names for selectors in patterns� the chances are quite good that f is de
ned in an

outer scope� perhaps it is the selector s�� It is very easy to overlook the fact that a ��� has been omitted�

even when the programmer knows there is a mistake in a pattern� A better language design would be to

eliminate the shorthand f� and force programmers to write f�tt� thereby making the di�erence between

the right and wrong versions much more obvious�

��

��� Types

FL is dynamically typed�in principle� all type checking is done at run�time� In this respect� FL is more

closely related to Lisp and Scheme than it is to ML or Haskell�

Many people consider static polymorphic type checking to be one of the central features of functional

languages� The advantages of static type checking are great� programming is both more secure �since

bugs that arise from type errors cannot be introduced into a program� and programs run faster �since

no dynamic type checking is required�� On the other hand� there are costs� First� because no static

type system can be both sound and complete �i�e�� no type system can recognize exactly the set of

programs that make run�time errors� some programs must be rejected that are otherwise meaningful�

Second� the language description becomes more complex� and programmers must understand polymorphic

type checking to write working programs� The former point is the source of an endless debate between

adherents of dynamic and static typing about whether any of the programs rejected by static type systems

are really useful� The latter point is indisputable� but experienced programmers have little if any trouble

dealing with static typing� Within the functional programming community� an overwhelming majority

supports static typing�

FL has taken a di�erent direction� exploring to what extent an implementation of a simple dynamically

typed language can achieve the security and e�ciency of a statically typed language� In FL� type errors

result in run�time exceptions� For example� the application s�� 	 would be a static type error in most

languages �since s� is meant to be applied to lists� but results in an s� exception in FL� This design

imposes a substantial burden on the implementation� because applications of primitives of s� must always

test to ensure that arguments are of the proper type� One of the goals of the FL implementation has

been to investigate to what degree the e�ects of static type checking can be recovered through program

optimization� replacing primitives such as s� by versions that perform no type�checking in contexts

where program semantics are not changed� For example� in the program s� � ���� ��� the function s� is

guaranteed to be applied to a non�empty sequence� Therefore� in this program s� can be replaced by

a di�erent function Safe s� that performs no run�time type check�� To determine where run�time type

checking can be omitted the FL implementation uses a type inference algorithm�

����� FL Type Inference

Although the FL language is dynamically typed� the FL implementation has a powerful type inference

system� The type system is not part of the language de
nition� In this respect it functions as a traditional

program analysis� which may be used at the discretion of the programmer or compiler� but is not required�

This section very brie�y describes the FL type system and presents two short examples� The interested

reader is referred to �AW��� AWL��� for details�

Functional languages such as ML and Haskell have type systems based on the well�known Hind�

ley�Milner type system �DM���� Hindley�Milner types include type constructors such as Int� Bool� and

�In fact� s� � ������� can be optimized to ��� as described in the following section�

��

List�t� where t is a type� function types t� � t�� type variables ��
� � � � � and quanti
ed types ���t��

Types denote sets of values� Type constructors denote sets of primitive and user�de
ned values such as

integers� booleans� and lists� A function type t� � t� denotes the set of functions mapping elements

of t� to elements of t� � A variable stands for an unknown type� and quanti
ed types denote sets of

polymorphic values� For example� the function s� that selects the
rst element of a sequence has the

Hindley�Milner type

s� �� ���List��� � �

where List��� stands for all FL sequences with elements drawn from the type � and the notation ���� is

read �has type��

The FL type system is an extension of the Hindley�Milner system� In addition to the Hindley�Milner

types� FL has restricted intersection t� � t� � union t�� t�� and complement �t� types� as well as recursive

types � � E���� There is also a least type � and a universal type �� The FL type system �abbreviated

FLT� has several nice properties�

� If a program has a Hindley�Milner type� then the Hindley�Milner type is derivable in FLT�

� Every program is typable in FLT�

� Every program has a minimal FLT type�

� The minimal FLT type is computable�

FLT�s minimal types are the analog of principal types in the Hindley�Milner system� The minimal type

of a program e is the smallest type derivable for e within the type system� The notion of a minimal type is

somewhat di�erent from the notion of a principal type� Principal types are de
ned syntactically� whereas

minimal types are de
ned semantically� Principal and minimal types coincide in the Hindley�Milner

system� FLT has minimal types but not principal types �AWL����

For brevity� a formal development of the FL type system is not presented here� Two examples should

su�ce to illustrate how the FL type system di�ers from the Hindley�Milner system� The
rst example is

the program s�� ���� ���� This program is a constant function that returns �� The general Hindley�Milner

type for a primitive such as s� is

s� �� ���List��� � �

The type List��� is de
ned by the recursive equation

List��� � Cons��� List����� Nil�

Using this type for s�� the best type that can be assigned to the subexpression s� in s� � ���� ��� by the

Hindley�Milner system is

s� �� List�Int� � Int

��

This typing proves that s� always is applied to a list� so s� does not need to check its argument at run�

time to ensure that it is a list� In addition� since type inference succeeds on this program� the programmer

can be con
dent that s� is not applied to� say� a �oating point number�

For this program� the FL type system can improve on the e�ciency and security of the Hindley�Milner

algorithm� Because Nil is a possible value of the List type� under the Hindley�Milner typing s� must

still perform a run�time check to ensure that its argument is not Nil � To improve the accuracy of type

inference� FL type inference does not use the List type but rather includes Cons and Nil as distinct type

constructors� In addition� there is a type constructor Exc�t� to make exceptions explicit in the type� The

general type of the function s� in the FL type system is

s� �� ���
�Cons��� Seq�� �
 � �Cons��� Seq��� � � Exc�Triple�String�String�
 � ��Cons��� Seq���

where Seq � Cons��� Seq� � Nil is the set of all sequences� �Cons��� Seq� is the set of all values that

are not sequences of length at least one� Triple�X� Y� Z� � Cons�X� Cons�Y� Cons�Z�Nil��� � and String �

Cons�Char� String�� Nil� This example is typical of the types of FL primitive functions� The domain

consists of two parts� the �good� arguments �in this case Cons��� Seq� � and the �bad� arguments �in

this case
 � �Cons��� Seq� �� In the range� there are the normal results �in this case �� and the

error results� The type Exc�Triple�String�String�
� ��Cons��� Seq��� is the type of an s� exception

h�s��� �arg��� xi where x is the argument to s��

Note that the type signature is polymorphic in both the �good� and the �bad� portions of the

domain� For the good arguments� Cons��� Seq� is polymorphic in the type of the head of the list� For

the bad arguments�
 � ��Cons��� Seq�� can be re
ned to any subset of the exception producing domain

by instantiating the type variable
� Polymorphism for the exception producing domain is useful for

two reasons� First� exceptions are intended to be used liberally in FL programming and sacri
cing

the accuracy of type inference for exceptions would make exceptions more expensive than necessary

�since fewer optimizations could be applied� and therefore discourage their use� Second� accurate type

information for exceptions is useful for debugging� as it can tell the programmer exactly what types of

values may produce an exception�

The type assigned by the FL type system to the instance of s� in this program is

s� �� Cons�Int� Seq�� Int

It is easy to check that this is an instance of the quanti
ed type for s� by substituting Int for � and 	

for
� �The minimal type � has the property that � � T � � and � � T � T for all types T�� This typing

proves that s� is always applied to a non�empty sequence� so no run�time check is required for Nil� and

it is immediate that s� can never generate an exception�

The second example uses a function that computes the last element of a sequence�

last�h�� �� ai where

f def last isseq� �not � isnull� � isnull � tl� s�� last � tl g

��

The function last is de
ned using the predicate isseq � �not � isnull� on the left�hand side of the �

sign� Recall �Section ��
� that this predicate is applied to last �s argument� and if it fails� an exception

is returned� In this case� an exception is returned if last is applied to a non�sequence or hi�

The meaning of this expression is a� The type assigned by the FL type system is Char� The most

interesting aspect of the analysis is the type assigned to the use of last in the top�level expression�

last �� X� Char where X � Cons�Int� X�� Cons�Char� Nil�

This type shows that last takes a non�empty sequence where the last element is a Char and returns a

Char� The type also says that sequence elements other than the last are integers� The FL type shows

that no run�time exceptions are possible� so this program can run without run�time type checking� This

program is not typable in the Hindley�Milner system� because the argument to last is a heterogeneous

sequence�

����� Discussion

FL�s lack of a static type system has motivated considerable research on new and powerful type systems

that are appropriate for dynamically typed languages� the FL type system is the result of this work� The

FL type system is a proper extension of the Hindley�Milner system that is able to type more programs

more accurately than the Hindley�Milner system� This is accomplished in a language with no static type

constraints� so the programmer and compiler are free to use the type system or not� So what� if anything�

is the catch$ This section covers four catches� the speed of type inference� understanding types� run�time

type tags� and module interfaces�

The FL type system does more than the Hindley�Milner system� so it is not surprising that it is

slower� The asymptotic complexity of the FL type inference algorithm is double exponential time� while

the Hindley�Milner type inference algorithm runs in �only%� single exponential time� In practice� the FL

type system is at least one order of magnitude slower than the Hindley�Milner system� The FL type

system is still fast enough to be usable� but it would be nice if it were a lot faster� it currently takes up

to �� seconds to analyze a ��� line program�

FL types are more complex than Hindley�Milner types� so an FL programmer who wishes to make use

of type information must deal with types more complex than an ML programmer� FL types are harder

to read than Hindley�Milner types� primarily because there is not a unique representation of a given type

�i�e�� many type expressions are equivalent�� The implementation of the FL type system makes use of

identities between types to simplify the representation of types� In practice� such simpli
cation greatly

improves the readability of type expressions�

The FL system provides type inference as a program analysis tool�it is not a required step of

compilation� Thus� an FL run�time system must carry type tags on all data� because compiled code does

in general perform run�time type checking� All existing implementations of functional languages carry

at least some run�time tags on data because existing garbage collection algorithms require them� There

��

is� however� an emerging technology of tagless garbage collection� where compile�time types are used at

run�time by the garbage collector to reconstruct tags �App���� If and when tagless garbage collection

algorithms become practical� implementations of statically typed functional languages will be able to use

them� this option cannot be exploited in an FL implementation�

The last and most serious cost of the FL approach to types is the lack of any module system �in FL

parlance� a module is a library�� This is not an inherent property of the type system� FL type inference

could accommodate a mechanism for specifying module interfaces� Rather� the absence of a module

system is the result of a design philosophy that avoids language complexity�

FL�s module problem can best be explained with another perspective on the relationship between FL

type inference and standard Hindley�Milner type inference� Compare again the Hindley�Milner and FL

types for s��

s� �� ���List��� � �

s� �� ���
�Cons��� Seq��
 � ��Cons��� Seq��� � � Exc�Triple�String�String�
 � ��Cons��� Seq���

Among other things� the Hindley�Milner type says that s� must be used in a context where it is applied

to a list� if it is not� the compiler rejects the program� The FL type has no such restriction�the domain

of s� includes all values and so the function can be used in any context� If s� is in fact applied to a list�

then the FL type of s� is simpli
ed for that instance �see the examples in Section ������� Thus� FL type

inference relies very heavily on information about the context in which a function is used in determining

the functions that do not require run�time type checking�

Unfortunately� this use of context information does not work well with separate compilation and

program optimization� Consider an FL library A that uses functions de
ned in library B� Library A can

be compiled using the types inferred for functions in B� but library B cannot be compiled knowing that

functions in B are used in the context given by A� because library B may be used at some future point by

a new library C that uses B�s functions in a di�erent context� If functions in library B were specialized

for library A� then B would have to be recompiled for C� in fact� B would have to be recompiled even if A

were modi
ed� In short� libraries could not be compiled separately� The current FL solution is to compile

libraries assuming that exported functions can be used in any context� This allows separate compilation

at the cost of performing less program optimization�

A method for specifying module interfaces would
x this problem� The programmer could then

describe the expected contexts in which library functions would be used� the compiler would both optimize

functions using that information and verify that uses of a function were consistent with its speci
cation�

To do this� however� would require that module speci
cations and types be included in the FL language

de
nition�

��� Input�Output

Functional programming does not lend itself readily to interaction with agents independent of a program�

The canonical problem is I�O and� speci
cally� the problem of writing interactive functional programs�

��

For many years there were only two solutions to this problem� The �convenient solution� was not to have

a functional language at all� ML� Lisp� and Scheme are in this category� Although all are functional in

the sense that an applicative style of programming is encouraged in practice� all have state and primitive

operations that modify the state by side�e�ect� The �pure solution� was to exploit lazy evaluation by

treating I�O routines as stream�valued stream functions� The convenient approach has the advantage

of allowing an unrestricted style of I�O programming at the cost of a more complicated underlying

semantics� On the other hand� the di�culty with the explicitly functional approach is that the increased

complexity of a program�s functionality becomes a notational nuisance� which masks the primary purpose

of the program� For example� a lazy� interactive program to correct misspelled words in a
le using an

�updatable� dictionary has the primary purpose of mapping an in file to a corrected file but has

the proper functionality

hin file� dictionary�keyboardi� hcorrected file� dictionary�� screen� rest of keyboardi

Note that the program must be given keyboard as input to receive responses to interactive queries it

puts on screen � and it must return the �rest� of the keyboard input for use by subsequent programs�

The treatment of I�O in FL is an attempt to combine the advantages �and avoid the problems� of

these two approaches by �semantically� attaching an explicit history component to the functionality of all

programs and �syntactically� suppressing consideration of that component� The success of this approach

depends on the extent to which programmers can use the convenience of treating the history component

implicitly� thus keeping their program notations uncluttered� and still be able to write clear programs�

Overall� FL�s I�O mechanism has worked out quite well in the FL implementation� Only a small

portion of the typical FL program uses I�O� so any reasonable scheme for I�O would be workable� The

FL design is especially convenient in two respects� First� because every function has an implicit history

component� it is very easy to add or remove I�O from programs without rewriting large sections of

code� If the history component were explicit� then adding I�O to one function would require changing

the functionality �i�e�� rewriting� every function that depended� directly or indirectly� on that function�

Second� because the history component is abstract and does not attach any particular semantics to I�O�

it provides a convenient device for making FL programs work in other ways with the outside world in

addition to I�O� For example� in the FL compiler primitive functions that may make arbitrary C function

calls are modelled as functions that modify the history� Because the FL compiler is guaranteed to preserve

program semantics �including history operations� this has proven to be a simple way to integrate existing

C library routines into FL programs�

A valid argument against the FL design is that the pervasive� implicit I�O component of the semantics

could seriously handicap program optimization� since program transformations must take account of the

potential for I�O anywhere in an FL program� In practice� this potential problem is a minor consideration�

Because most primitive functions do not depend on the history component of the semantics and I�O is

not used pervasively in most programs� very simple program analysis can identify almost all expressions

that do not perform I�O� within these sections of code more general program transformations apply�

��

Furthermore� because a machine�s I�O operations are usually very slow relative to the speed of a machine�s

processor� large�scale optimization on portions of programs that do a great deal of I�O frequently does

not improve program performance signi
cantly� This last argument must be quali
ed by the type of

I�O that is being performed� It certainly holds for interactive programs� it is less true of programs with

stringent real�time I�O constraints�

Since the development of FL�s I�O system another� more general� approach to I�O in functional

languages has been discovered� This approach� known as monadic I�O� uses higher�order combinators

to hide and control how the history component is threaded through a computation �Wad��� PJW����

Monadic I�O uses a particular monad� variations on the same higher�order combinators can implement

other language features such as exceptions and continuations as monads� Essentially� FL I�O is itself a

particular monad built into the language�s denotational semantics� The monadic approach takes I�O out

of the semantics and makes it available to the programmer� which gives monadic I�O several advantages

over the FL design� First� it is more programmable�the history component is not wired into the language

in a particular way and� within limits� the wiring can be rearranged by the programmer� Second� monads

can explicitly delimit the scope of computations that use I�O� making program analysis to discover where

I�O cannot be performed unnecessary� The only disadvantage of monadic I�O with respect to FL is that

programs must be structured using a monad to take advantage of it� Thus� adding I�O to a program

that is not already structured using the I�O monad may involve rewriting a large portion of the program�

Because every FL program has I�O built in� there is no such cost in FL programming�

��� Exceptions and Order of Evaluation

This section discusses the experience with exceptions in FL� Because exceptions are inextricably tied with

order of evaluation� that topic is addressed here as well� Exceptions are one of the successes of FL� On

the semantic level� it is worth stressing that FL�s denotational treatment of exceptions is referentially

transparent�FL exceptions are functional� On the pragmatic level� exceptions have proven very useful

in programming and reasonably e�cient to implement�

Exceptions help FL programmers in at least two ways� First� there is a �throw and catch� style of

programming that is easy with exceptions but di�cult to simulate without exceptions� The common

scenario is that one wishes to exit early from a computation in certain circumstances� For example� in

computing the conjunction of a sequence of truth values there may be no reason to continue after the

rst false value is encountered� Signalling an exception ends the computation� all that is needed is a

surrounding catch that handles the exception�

The second advantage of exceptions in FL is the security that a program cannot terminate without

returning a meaningful value� There is nothing implementation�dependent about FL exceptions� Pro�

gram optimization or porting code to a di�erent implementation cannot change the exception produced�

This property is important because exceptions play a very large role in helping FL programmers debug

programs �recall that all kinds of errors�including type errors�are exceptions in FL�� The standard

��

system exceptions are often informative enough to isolate program bugs quickly� An extension that has

been considered but not implemented in the FL system is to include line number information in excep�

tions that are the meaning of an entire program� The argument for this extension is that it makes
nding

where exceptions arise even easier than just having the name of the function� the argument against it is a

minor loss of referential transparency� since a program�s meaning can now depend on the textual layout

of the program�

A useful point of comparison is the situation with run�time exceptions and Lisp compilers� When

running Lisp programs� it is not uncommon to receive one error message when the program is compiled

and a di�erent error message when the program is interpreted� Frequently� the error message from the

compiled program is on a topic unrelated to the actual problem� This sort of behavior arises because

optimizing Lisp compilers freely rearrange operations without regard to preserving errors� It also makes

debugging Lisp programs much more di�cult than necessary�

Another point of comparison is ML� which incorporates exceptions in a way quite similar to FL� Both

the motivation for and experience with exceptions in ML are similar to that of FL �App���� The major

di�erence is that exceptions are used uniformly in FL� while in ML certain errors are treated as static

type errors and others as run�time exceptions�

There are semantic and pragmatic arguments for not using exceptions� The pragmatic argument is

twofold�
rst� implementations of exceptions and exception handling are expensive� and second� making

exceptions part of program semantics greatly inhibits program optimization� These problems are serious

in FL� because exceptions are used pervasively� The solution to these problems in the FL implementation

is itself twofold� The FL type system is able to prove at compile�time that most functions cannot produce

exceptions� In addition� a robust theory of program transformation in the presence of exception producing

functions has been developed and implemented in the FL compiler �AWW���� Together� these two tools

reduce the cost of FL�s pervasive use of exceptions to a tolerable level�

The semantic argument against exceptions is that adding exceptions forces too much to be speci
ed

about the order of evaluation� For example� using exceptions a programmer can observe the order in

which a function evaluates its arguments� Allowing this kind of programming does not interact well with

lazy evaluation� this is one of the reasons why lazy functional languages do not have built�in exceptions�

At one time� this semantic argument carried signi
cant weight for FL�the language that evolved

into FL was lazy for many years �HWW�
�� Originally� FL became strict because it was necessary

to specify an order of evaluation to guarantee that the single�threaded history component for I�O is

handled correctly� Exceptions were added to the language later �BWW����� Today� much of the original

motivation for strictness has been removed by the discovery of monadic I�O �see Section ����� FL�s I�O

system could be replaced by monadic I�O� I�O programming would become somewhat more inconvenient

and the language semantics would be simpli
ed� Overall� the tradeo� may well be worthwhile� since

I�O is a small component of most programs� Exceptions� too� can be expressed using a monad� so one

might suppose that exceptions could also be taken out of the semantics� provided as a monad� thus further

simplifying FL� While this argument has some validity� it does not account for the pragmatic requirements

�	

of FL programming� A large part of the security of FL programming comes from the fact that exceptions

are built�in� Monads require some extra e�ort to use� so FL programmers would constantly pay a price

for the privilege of occasionally programming without exceptions� Because of the lack of static typing as a

default� programmers who chose not to have exceptions would be seriously handicapped in debugging FL

programs� There is of course another alternative� drop exceptions and add static typing� This alternative

is the design taken in Haskell �HWA�����

After much experience with writing functional programs in FL� another rationale has emerged for

having a strict language� It is often necessary to rewrite a functional program to make it run faster�

there are always things even an aggressive optimizing compiler cannot do� The task of rewriting pro�

grams for performance is aided greatly by a clear understanding of the order of evaluation� Using FL�s

simple� conventional leftmost�innermost evaluation order� it is easy to reason about the time and space

complexity of programs� In lazy languages very little is known about how to do such reasoning in general�

and programmers writing in lazy languages today have to use considerable ingenuity to write e�cient

programs� It should be said that not much attention has been given to the problem of writing e�cient

lazy functional programs as yet� although it is becoming an active area of research �Lau����

� Experience and Lessons Learned

FL is designed to be a simple language to learn and to use� These desiderata are re�ected both in

the syntax and semantics of FL� FL�s syntax is very uniform at all levels of programming� the only

syntax a programmer must learn is the function de
nition� In contrast� most other languages �functional

or otherwise� often have a separate type language� module interface language� and perhaps a compiler

pragma language included as part of the programming language� Semantically FL manages to be simple

while still providing support for practical programming features including I�O� exceptions� and user�

de
ned types�

Among the people who have tried programming in FL� the ones who like FL most are those who have

little previous programming experience� Frequently� these people have been frustrated by the level of

sophistication required to program in conventional imperative languages such as C� FL appeals to naive

programmers because it provides a simple� �exible programming model that can be learned very quickly�

For this group of people� it is considered an advantage that FL has no static type system or module

interface system that must be learned�

At the other end of the spectrum� users who have substantial programming experience in other

functional languages are less enthusiastic about FL� While these people
nd FL usable for programming�

FL lacks the basic tools they are accustomed to� especially static typing and a module system� Ironically�

these omissions are part of what makes FL attractive to inexperienced programmers� In fact� both

groups have a point� FL�s very simplicity makes it easy for someone to start programming without being

burdened with the daunting task of learning a large language� On the other hand� FL is too simple for

sophisticated programmers who want more precise control of the programming process�

�

Details of FL�s syntax are annoying to inexperienced and experienced users alike� The most common

problems arise from having two syntactic forms that di�er by only a single character� which makes it

too easy to accidentally enter a valid program that means something di�erent from what was intended�

The lexical structure of FL is too concise�there should be more redundancy to help prevent this kind of

programming error�

On the other hand� exceptions and I�O both work very well in FL� Exceptions� in particular� turned

out to be much more important than originally imagined� In a programming language with exceptions

but without static typing� exceptions assume the role of the primary debugging assistance provided by

the language� This design works reasonably well in practice� because in most cases the exception returned

by a primitive function is su�cient to isolate a type error quickly�

FL�s I�O mechanism provides an unobtrusive mechanism for interacting with agents external to an

FL program� The important lesson to be drawn from FL�s I�O mechanism is the value of designing I�O

into a programming language from the outset� The FL de
nition has a very general I�O interface that is

well�integrated into the language semantics� In the FL implementation� the I�O interface was eventually

used in ways that were not considered during the design� for example� the I�O mechanism provided a

convenient� semantically safe way to call foreign functions� The careful� general initial design of FL paid

o� handsomely in this case� without the general I�O mechanism� it would have been necessary to design

something ad hoc part way through the language implementation and it is unlikely that it would have

worked out as nicely�

In many respects the design and quality of a language implementation is as important as the design of

the programming language itself� For the FL compiler developed at IBM Almaden� considerable emphasis

has been placed on generating code that is completely faithful to the language semantics� This compiler

has been in use internally for small and large projects for several years and at this point there is a high

degree of con
dence in the correctness of the code produced� The target language of the compiler is C�

Many other compiler projects have used C as a target because it is reasonably well�suited to the role of

a portable assembly language� However� portability turned out not to be the greatest bene
t of using

C� The single greatest bene
t to using C as a target is that it is very easy to write programs that inter�

operate with C routines� in addition� one immediately has access to the vast array of C library routines

already in existence�

Somewhat surprisingly� compatibility with C is the key that has made it feasible for users to write in

FL� Writing a large application from scratch is hard work in any language� it is particularly uninviting

when signi
cant portions of the application are already implemented in another language� Making it

possible for people to use FL without giving up their favorite C libraries has made giving FL a try a

much more attractive and viable prospect�

It was recognized from the outset of the FL compiler e�ort that program optimization would play

a critical role in generating good code from FL programs� This has indeed proven to be the case� The

FL compiler performs a great deal of program analysis and transformation� including many standard

optimizations as well as some unique to FL� Among the latter� the most important is the combination

��

of type inference and program transformation aimed at reducing the overhead of run�time type checking

and exception handling �see Section �����

The most serious �aw in the FL compiler is a direct result of the heavy emphasis on program analysis

and optimization� The FL compiler is slow� with most of the time spent in the backend phases� In this

respect FL is in good company with other functional language implementations� some �but certainly not

all� of which are slower than the FL compiler� Unfortunately� compile time is a scarce resource and must

be treated as such� In the FL compiler� it has been necessary to insert a �fast path� for compilation

that bypasses all of the analysis and optimization and enables programs to be compiled in a few seconds�

Almost all FL development is done using the non�optimizing version of the compiler� optimization is only

used in the
nal stages of software development� As functional programming becomes more popular and

�mainstream�� it will be necessary to place more emphasis on writing compilers for functional languages

with good interactive performance�

� Acknowledgements

The authors are grateful to all of the people who have worked on the design and implementation of FL�

John Backus supervised and supported all of the design and much of the implementation� Peter Lucas

also contributed a great deal to the FL de
nition and compiler� In roughly chronological order� Tim

Winkler� Bill Griswold� Thom Linden� Paul Tucker� Brian Murphy� Brennan Gaunce� David Evans� and

TK Lakshman all wrote substantial portions of the FL compiler and runtime system� Finally� the authors

are indebted to Ray Strong and Danny Dolev for illustrating by example how to program large systems

in FL�

References

�App��� A� Appel� Runtime tags aren�t necessary� Lisp and Symbolic Computation� ���	�&�
�� �����

�App��� A� Appel� A critique of Standard ML� Journal of Functional Programming� ����� ����� to

appear�

�AW��� A� Aiken and E� Wimmers� Type inclusion constraints and type inference� In Proceedings

of the ���� Conference on Functional Programming Languages and Computer Architecture�

pages ��&��� Copenhagen� Denmark� June �����

�AWL��� A� Aiken� E� Wimmers� and T�K� Lakshman� Soft typing with conditional types� In Twenty�

First Annual ACM Symposium on Principles of Programming Languages� pages �
�&����

Portland� Oregon� January �����

��

�AWW��� A� Aiken� J� H� Williams� and E� L� Wimmers� Program transformation in the presence of

errors� In Seventeenth Annual ACM Symposium on Principles of Programming Languages�

pages ���&���� January �����

�Bac��� J� Backus� Can programming be liberated from the von Neumann style$ A functional style

and its algebra of programs� Communications of the ACM� ������
��&
��� August �����

�Bac�	� J� Backus� From function level semantics to program transformation and optimization�

Technical Report RJ �	
� �����	�� IBM� ���	�

�BWW�
� J� Backus� J� H� Williams� and E� L� Wimmers� The FL language manual� Technical Report

RJ 	��� �	������ IBM� ���
�

�BWW���� J� Backus� J� H� Williams� E� L� Wimmers� P� Lucas� and A� Aiken� The FL language

manual parts � and �� Technical Report RJ ���� �
��
��� IBM� �����

�BWW��� J� Backus� J� H� Williams� and E� L� Wimmers� An introduction to the programming

language FL� In D� Turner� editor� Research Topics in Functional Programming� pages

���&���� Addison�Wesley� June �����

�DM��� L� Damas and R� Milner� Principle type�schemes for functional programs� In Ninth Annual

ACM Symposium on Principles of Programming Languages� pages ���&���� January �����

�HMT��� R� Harper� R� Milner� and M� Tofte� The de
nition of standard ML�version �� Technical

Report ECFS�LFCS������� Laboratory for Foundations of Computer Science� University of

Edinburgh� �����

�HWA���� P� Hudak� P� Wadler� Arvind� B� Boutel� J� Fairbairn� J� Fasel� J� Hughes� T� Johnsson�

D� Kieburtz� S� P� Jones� R� Nikhil� M� Reeve� D� Wise� and J� Young� Report on the

functional programming language Haskell� Technical Report DCS�RR�

� Yale University�

December �����

�HWW�
� J� Halpern� J� Williams� and E� Wimmers� Good rewrite strategies for FP� In Thirteenth

Annual ACM Symposium on Principles of Programming Languages� pages ���&�
�� January

���
�

�HWW��� J� Halpern� J� Williams� and E� Wimmers� Completeness of rewrite rules and rewrite strate�

gies for FP� Journal of the ACM� �������
&���� January �����

�HWWW�	� J� Halpern� J� Williams� E� Wimmers� and T� Winkler� Denotational semantics and rewrite

rules for FP� In Twelfth Annual ACM Symposium on Principles of Programming Languages�

pages ���&���� January ���	�

��

�Lau��� J� Launchbury� A natural semantics for lazy evaluation� In Twentieth Annual ACM Sym�

posium on Principles of Programming Languages� pages ���&�	�� January �����

�PJW��� S� L� Peyton Jones and P� Wadler� Imperative functional programming� In Nineteenth

Annual ACM Symposium on Principles of Programming Languages� pages ��&��� January

�����

�Sto��� J� E� Stoy� Denotational Semantics	 The Scott�Strachey Approach to Programming Language

Theory� The MIT Press� Cambridge� MA� �����

�Wad��� P� Wadler� Comprehending monads� In Proceedings of the ACM Conference on Lisp and

Functional Programming� June �����

�Wil��a� J� Williams� Notes on the FP style of functional programming� In Functional Programming

and its Applications� Cambridge University Press� January �����

�Wil��b� J� Williams� On the development of the algebra of functional programs� ACM Transactions

on Programming Languages and Systems� ��������&�	�� October �����

�WW��� J� H� Williams and E� L� Wimmers� Sacri
cing simplicity for convenience� Where do you

draw the line$ In Fifteenth Annual ACM Symposium on Principles of Programming Lan�

guages� pages �
�&���� January �����

��

