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Abstract. The method proposed by Davis, Putnam, Logemann, and Loveland for
propositional reasoning, often referred to as the Davis–Putnam method, is one of
the major practical methods for the satisfiability (SAT) problem of propositional
logic. We show how to implement the Davis–Putnam method efficiently using the
trie data structure for propositional clauses. A new technique of indexing only the
first and last literals of clauses yields a unit propagation procedure whose complexity
is sublinear to the number of occurrences of the variable in the input. We also show
that the Davis–Putnam method can work better when unit subsumption is not used.
We illustrate the performance of our programs on some quasigroup problems. The
efficiency of our programs has enabled us to solve some open quasigroup problems.

Keywords: propositional satisfiability, Davis–Putnam method, trie data structure.

1. Introduction

In recent years, there has been considerable renewed interest in the
satisfiability (SAT) problem of propositional logic. The SAT problem
is known to be difficult to solve — it is the first known NP-complete
problem. Because the SAT problem is fundamental to many practical
problems in mathematics, computer science, and electrical engineer-
ing, efficient methods that can solve a large subset of SAT problems
are eagerly sought. Empirical research has been very fruitful for the
development of efficient methods for SAT problems.

The method proposed by Davis, Putnam, Logemann, and Loveland
for propositional reasoning [3, 4], often referred as the Davis–Putnam
method, has long been a major practical method for solving SAT prob-
lems. It is based on unit propagation (i.e., unit resolution and unit
subsumption) and case splitting. It is known that many factors affect
the performance of the method: the data structure for clauses, the
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choice of variable for splitting, and so forth. In this paper, we will
concentrate on the use of tries (discrimination trees) and related re-
finements for the Davis–Putnam method. In [5], de Kleer used tries to
represent propositional clauses for efficient subsumption.

In the past, both of us have used tries to represent first-order terms
and to implement efficient rewriting-based theorem provers. In au-
tumn 1992, we independently started using tries in the Davis–Putnam
method. By using the trie data structure, our programs gain something
in efficiency, and much in elegance. Some preliminary results of our
experiments are presented in [15, 16, 18]. In this paper, we present in
detail the data structures used in our programs.

One of the major motivations for developing our programs was
to solve open problems in algebra concerning the existence of quasi-
groups satisfying certain constraints [1]. The usefulness of computer
programs to attack these quasigroup problems has been demonstrated
in [19, 8, 15]. We prefer these quasigroup problems as benchmarks over
randomly generated SAT problems for testing constraint solving meth-
ods: The problems have fixed solutions; descriptions of the problems
are simple and easy to communicate; most important, some cases of the
problems remain open, offering challenge and opportunities for friendly
competition as well as contributions to mathematical knowledge. Be-
sides having large search spaces, quasigroup problems are demanding
examples for the Davis–Putnam method because their propositional
representations contain n3 variables and (depending on the constraint)
from O(n4) to O(n6) clauses, so large sets of clauses with hundreds of
thousands of literals must be handled.

Recently, some incomplete methods based on local search have been
proposed that can solve very large size SAT problems [10, 14]. The
usefulness of these methods for solving quasigroup problems remains
to be seen. However, these methods cannot entirely replace the Davis–
Putnam method because many quasigroup problems have no solutions,
and incomplete methods cannot prove that no solution exists or count
the number of solutions. Quasigroup completion problems (completion
of partially filled in Latin squares, but without the constraints) are now
a subject of research [9].

2. The Davis–Putnam Method

The Davis–Putnam method is based on three simple facts about truth
table logic. First, where A and B are any formulae, the conjunction
A∧ (A∨B) is equivalent to A∧B and the conjunction A∧ (A∨B) is
equivalent to A . It follows that the application of unit resolution and
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function Satisfiable ( clause set S ) return boolean
/* unit propagation */
repeat

for each unit clause L in S do
/* unit subsumption */
delete from S every clause containing L
/* unit resolution */

delete L from every clause of S in which it occurs
od
if S is empty then

return true
else if a clause becomes null in S then

return false
fi

until no further changes result
/* splitting */
choose a literal L occurring in S
if Satisfiable ( S ∪ {L} ) then

return true
else if Satisfiable ( S ∪ {L} ) then

return true
else

return false
fi

end function
Figure 1. A simple Davis–Putnam algorithm.

subsumption to any set of propositional clauses results in an equivalent
set. Second, where X is any set of formulae and A any propositional
formula, X has a model iff either X ∪ {A} has a model or X ∪ {A}
has a model. Third, where X is any set of propositional clauses and
A any propositional atomic formula, if A does not occur at least once
positively in [some clause in] X and at least once negatively, then the
result of deleting from X all clauses in which A occurs is a set which
has a model iff X has a model.
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A simple algorithm based on the first two of these facts1 is shown
in Figure 1. That it is sound and complete for propositional clause
problems is well known.

Naturally, one important place at which heuristics may be inserted
is in the choice of a literal for splitting. In this paper, to eliminate as
much as possible other factors of the implementations, unless specified
otherwise, all of our programs will use identical input and simply choose
the minimally indexed variable not yet assigned a value for splitting.
This literal selection strategy results in a substantial increase in the
size of the search space (evident in Tables I and V), but ensures com-
parability of results; the focus of this paper is the effect of the trie data
structure and other refinements on the speed of unit propagation, not
the effect of splitting heuristics on search space size.

We have tested some other advanced SAT techniques, such as intel-
ligent backjumping and lemma generation, with the trie data structure
with good preliminary results [18]. However, for quasigroup problems,
these techniques seem not to have much positive impact on perfor-
mance. A thorough discussion is outside the scope of this paper.

3. Trie Data Structure for Propositional Clauses

Our programs gain something in efficiency, and much in elegance, from
using the trie data structure, first used to represent sets of propositional
clauses in [5].

We assume that each propositional variable has a unique index,
which is a positive integer. The index of the negation of a variable
is the negation of the index of that variable. A clause is represented by
the list of indices of the literals in the clause.

Conceptually, the trie data structure for propositional clauses is very
simple. It is a tree all of whose edges are marked by indices of literals
and whose leaves are marked by a clause mark. A clause is represented
in a trie as a path from the root to a leaf such that the edges of the
path are marked by the literal indices of the clause. If two clauses
(represented as lists of integers in ascending order by absolute value)
have the same prefix of length n, then they share a path of length n in
the trie.

If all the nodes that have an edge of the same mark to the same
parent node in a trie are made into a linear list, we may use a 3-ary
tree to represent a trie as follows: Each node of the tree is empty (nil),

1 Eliminating “pure” variables that occur only positively or only negatively is
not necessary for completeness. Moreover, in many types of problems, such as the
quasigroup problems that we are especially interested in, the condition never occurs.
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or a clause end-mark ( ), or a 4-tuple 〈var, pos, neg, rest〉, where var
is a variable index, pos is its positive child node, neg is its negative
child node, and rest is its brother node. The interpretation is that the
edge from this node to pos is implicitly marked by var; the edge from
this node to neg is implicitly marked by (−var); rest is the next node
in the linear list of nodes that have the same parent node in the trie;
rest does not contain any var or (−var) edges.

A set S of (nontautologous) propositional clauses is represented by
a trie TS as follows: If S is empty, then TS = nil; if S contains a null
clause, then TS = ; otherwise, choose any variable index v and divide
S into three groups:

P = {v ∨ P1, . . . , v ∨ Pn} — the clauses that contain v positively.
Q = {v ∨ Q1, . . . , v ∨ Qm}— the clauses that contain v negatively.
R = {R1, ..., Rl} — the clauses that do not contain v.

Let
P ′ = {P1, . . . , Pn} — P with occurrences of v removed.
Q′ = {Q1, . . . , Qm} — Q with occurrences of v removed.

Let TP ′ , TQ′ , and TR be the trie nodes recursively representing P ′, Q′,
and R, respectively. Then S can be represented by TS = 〈v, TP ′ , TQ′ , TR〉.
For example, if S = {x1 ∨ x2, x1 ∨ x2}, then

TS = 〈1, 〈2, , nil, nil〉, 〈2, nil, , nil〉, nil〉.

A trie is said to be ordered if for any node 〈var, pos, neg, rest〉, var
is smaller than any variable index appearing in pos, neg, or rest. The
trie-merge operation, an extension of the merge-sort algorithm that
merges two ordered tries into a single one, is shown in Figure 2. The
insertion of one clause c into a trie T can be done using trie-merge, if
we first create a trie Tc for c and then merge Tc and T .

If the value of var is true, 〈var, pos, neg, rest〉 is equivalent to trie-
merge(neg, rest). Similarly, 〈var, pos, neg, rest〉 is equivalent to trie-
merge(pos, rest) when the value of var is false. The nodes 〈var, pos, neg, 〉
and 〈var, , , rest〉 are equivalent to . The node 〈var, nil, nil, rest〉
is equivalent to rest. We replace nodes by their simpler equivalents
whenever possible in the trie-merge operation.

The unit propagation operation of the Satisfiable procedure can
be easily implemented on tries: when a variable var is set to true,
we simply replace each node 〈var, pos, neg, rest〉 in the trie by trie-
merge(neg, rest). The case when var is set to false is handled similarly.

The trie representation of a set of propositional clauses has several
advantages for the Davis–Putnam method:
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function trie-merge (trie t1, trie t2) return trie
if t1 = or t2 = then

return
else if t1 = nil then

return t2
else if t2 = nil then

return t1
fi
let t1 = 〈v1, p1, n1, r1〉
let t2 = 〈v2, p2, n2, r2〉
if v1 = v2 then

let n = trie-merge(n1, n2)
let r = trie-merge(r1, r2)
return 〈v1, trie-merge(p1, p2), n, r〉

else if v1 < v2 then
return 〈v1, p1, n1, trie-merge(r1, t2)〉

else
return 〈v2, p2, n2, trie-merge(r2, t1)〉

fi
end function
Figure 2. The trie-merge procedure.

− Duplicate clauses are automatically eliminated when the trie is
constructed.

− Memory usage is reduced because of shared clause prefixes.

− Unit clauses can be found quickly.

− Tail-subsumed clauses are automatically eliminated when the trie
is constructed. A clause is said to be tail-subsumed by another
clause if its first portion of the literals is also a clause. For example,
x1 ∨ x2 ∨ x3 is tail-subsumed by x1 ∨ x2.

− Tail-resolutions are automatically performed when the trie is con-
structed. If c1∨L and c1∨L∨c2 are two clauses, the tail-resolution
is the resolution on the last literal of the first clause and the result
is c1 ∨ c2 which subsumes the second clause. So the second clause
will be replaced by c1∨c2. In our implementation, such resolutions
will be performed no matter which clauses enters the trie first.

− The unit propagation operation can be performed relatively effi-
ciently. Because the subtrie 〈var, pos, neg, rest〉 does not contain
any variable var′ < var, it does not need to be searched or altered
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Implementing the Davis–Putnam Method 7

when assigning a value to var′. Multiple variable assignments can
be done in a single traversal of the trie.

4. Quasigroup Problems

The quasigroup problems are given by Fujita, Slaney, and Bennett in
their award-winning IJCAI paper [8]. Roughly speaking, the problems
concern the existence of v × v Latin squares — each row and each
column of a Latin square is a permutation of 0, 1, . . . , (v − 1) — with
certain constraints. Given 0 ≤ i, j < v, let i ∗ j denote the entry at
the ith row and jth column of a square. The following clauses specify
a v × v Latin square: for all elements x, y, u,w ∈ S = {0, . . . , (v − 1)},

x ∗ u = y, x ∗ w = y ⇒ u = w : left-cancellation law, (1)
u ∗ x = y,w ∗ x = y ⇒ u = w : right-cancellation law, (2)
x ∗ y = u, x ∗ y = w ⇒ u = w : unique-image property, (3)

(x ∗ y = 0) ∨ · · · ∨ (x ∗ y = (v − 1)) : (right) closure property. (4)

It was shown in [15] that the following two clauses are valid con-
sequences of the clauses above and adding them reduces the search
space.

(x ∗ 0 = y) ∨ · · · ∨ (x ∗ (v − 1) = y) : middle closure property, (5)
(0 ∗ x = y) ∨ · · · ∨ ((v − 1) ∗ x = y) : left closure property. (6)

For any x, y, z in {0, . . . , (v−1)}, the following constraints are given:2

Name Constraint

QG1 x ∗ y = u, z ∗ w = u, v ∗ y = x, v ∗ w = z ⇒ x = z, y = w

QG2 x ∗ y = u, z ∗ w = u, y ∗ v = x,w ∗ v = z ⇒ x = z, y = w

QG3 (x ∗ y) ∗ (y ∗ x) = x

QG4 (x ∗ y) ∗ (y ∗ x) = y

QG5 ((x ∗ y) ∗ x) ∗ x = y

QG6 (x ∗ y) ∗ y = x ∗ (x ∗ y)
QG7 ((x ∗ y) ∗ x) ∗ y = x

In the following, problem QGi.v denotes the problem represented by
clauses (1)–(6) plus QGi for S = {0, ..., (v−1)}. In addition, clauses for

2 The QG7 constraint is the one used in [15], not [8].
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the idempotency law, x∗x = x, and a constraint such as x∗(v−1) ≥ x−1
to eliminate some isomorphic models are used for each problem here.

Propositional clauses are obtained by simply instantiating the vari-
ables in clauses (1)–(6) by values in S and replacing each equality
x ∗ y = z by a propositional variable px,y,z. The number of the proposi-
tional clauses is determined by the order of the quasigroup (i.e., v)
and the number of distinct variables in a clause. Constraints QG1
and QG2 can be handled directly, but constraints QG3–QG7, must
be transformed into “flat” form. For example, the flat form of QG5 is

(x ∗ y = z), (z ∗ x = w) ⇒ (w ∗ x = y).

It can be shown that the two “transposes” of the above clause are also
valid consequences of QG5:

(w ∗ x = y), (x ∗ y = z) ⇒ (z ∗ x = w),
(z ∗ x = w), (w ∗ x = y) ⇒ (x ∗ y = z).

Experiments have shown that adding these “transposes” to the input
can reduce the search space; this is also true of QG3, QG4, QG6, and
QG7. More information on quasigroup problems can be found in [1],
[8], [15], and [17].

5. DDPP: A Nondestructive Trie-based Implementation

DDPP (Discrimination-tree-based Davis–Putnam Prover) is a straight-
forward implementation of the Davis–Putnam method based on the
trie-merge operation. It performs the operation nondestructively, and
the result shares (nearly) maximal structure with the original trie to
minimize the memory allocation. DDPP is written in Common Lisp. A
detailed description can be found in [13].

Performance of DDPP (and LDPP) on some quasigroup problems
is shown in Table I. Search was continued until the search space was
exhausted and all models had been found. The number of branches is
one plus the number of splittings in the Davis–Putnam method. The
data was collected using CMU Common Lisp on a 200 MHz Pentium
Pro processor with 128 MB memory. The same sets of clauses were
used for all results in this paper.

Several open problems about quasigroups were first solved by DDPP
[15]: QG5.13, QG5.14, and QG5.15 (negatively), and QG4.12 (posi-
tively), but DDPP was still hindered by the speed of the crucial unit
propagation operation. Although the trie representation eliminated search-
ing subtries 〈var, pos, neg, rest〉 for variables var′ < var, extensive
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Table I. DDPP (nondestructive trie representation) vs. LDPP (destructive list
representation); LDPP′ omits unit subsumption.

DDPP LDPP LDPP′

Problem Clauses Models Branches Search Search Search
(sec) (sec) (sec)

QG1.7 68083 8 958 5.8 13 6.1
.8 148957 16 590624 4011 11489 5101

QG2.7 68083 14 672 4.8 11 4.3
.8 148957 2 579624 4029 12282 5629

QG3.8 10469 18 1016 7.4 1.9 0.8
.9 16732 − 82405 717 122 71

QG4.8 9685 − 910 7.4 1.6 0.6
.9 15580 194 59514 610 98 61

QG5.9 28540 − 188 4.2 0.7 0.4
.10 43636 − 1454 63 10 4.2
.11 64054 5 12581 962 116 54
.12 90919 − 139582 18062 1807 853
.13 125464 − 1798177 370626 32704 15255

QG6.9 21844 4 52 1.7 0.3 0.1
.10 33466 − 314 14 2.0 0.7
.11 49204 − 2523 185 20 9.6
.12 69931 − 26848 3400 315 142

QG7.9 22060 4 42 1.1 0.3 0.1
.10 33736 − 817 28 4.5 1.8
.11 49534 − 11617 802 90 42
.12 70327 − 159908 20609 1942 913
.13 97072 64 2351662 552988 45573 19684

searching was still necessary. Moreover, the nondestructive trie-merge
still required some storage allocation. Nevertheless, the approach re-
mains appealing, particularly when destructive operations are undesir-
able or impractical as in logic programming.
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6. LDPP: A Destructive Non-Trie-Based Implementation

LDPP (Linear-list-based Davis–Putnam prover) was written to avoid
the cost of the nondestructive trie-merge operation in unit propagation.
It uses reversible destructive operations on lists instead. Like DDPP,
LDPP is written in Common Lisp.

LDPP is generally much faster than DDPP. It performs unit reso-
lution and unit subsumption operations quickly by decrementing and
setting fields. Resolvable or subsumable clauses need not be searched for
because each variable contains pointers to all the clauses that contain
the variable.

In LDPP, a set of clauses is represented by a list of clauses and a
list of variables. Each clause contains the following fields:

− positive-literals, negative-literals: List of pointers to vari-
ables occurring positively (resp. negatively) in this clause.

− subsumed: If the clause has been subsumed, this field contains a
pointer to the variable whose assignment subsumed this clause;
otherwise it is nil.

− number-of-active-positive-literals,
number-of-active-negative-literals: When subsumed is nil,
this is the number of variables in positive-literals (resp.
negative-literals) that have not been assigned a value.

Each variable contains the fields:

− value: This is true if the variable has been assigned the value
true, false if it has been assigned false, and nil otherwise.

− contained-positively-clauses,contained-negatively-clauses:
List of pointers to clauses that contain this variable positively
(resp. negatively).

To assign true to a variable:

− Its value field is set to true.

− Unit subsumption: Every clause in contained-positively-clauses
has its subsumed field set to the variable, unless subsumed was
already non-nil.

− Unit resolution: Every clause in contained-negatively-clauses
has its number-of-active-negative-literals field decremented
by one, unless subsumed was already non-nil. Note that we don’t
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modify negative-literals itself. If the sum of number-of-active-
negative-literals and number-of-active-positive-literals
reaches zero, the current truth assignment yields the unsatisfiable
empty clause. If the sum reaches one, a new unit clause has been
produced. The newly derived unit clause can be identified by find-
ing the only atom in positive-literals or negative-literals
whose value is nil. These are queued and assigned values before
unit propagation finishes.

Assignment of false to a variable is done analogously. The set of
clauses after a sequence of assignments is represented by those clauses
in the list whose subsumed field is nil; the literals still present in these
clauses are those in positive-literals and negative-literalswhose
value is nil. An assignment can be undone during backtracking before
trying an alternative assignment. Many other implementations of the
Davis–Putnam method employ a similar approach, including Crawford
and Auton’s NTAB [2], Letz’s SEMPROP, and McCune’s MACE [12].

LDPP′ is a faster variant of LDPP that explores exactly the same
search space as LDPP but does not perform the subsumption operation
(see Section 7.2.2).

7. SATO: A New Algorithm for Unit Propagation

The high cost of the trie-merge operation in DDPP, which motivated
the abandonment of the trie representation in LDPP, does not imply
that the trie data structure is ineffective for the Davis–Putnam method.
Actually, the implementations of the Davis–Putnam method in the
SATO program (SAtisfiability Testing Optimized) [16] did not use the
trie-merge operation. In this section, we describe some ideas used in
SATO to improve the performance of the Davis–Putnam method based
on the trie data structure.

SATO was used to settle several open cases of quasigroup problems,
including QG5.14 (without the idempotency law), QG6.15, QG7.15
(negatively), QG2.14, QG2.15, and QG7.16 (positively). Some of these
problems required several weeks of CPU-time on a powerful worksta-
tion. The efficiency of SATO was indispensable for our success.

SATO possesses features of DDPP (trie representation) and LDPP
(destructive operations and lists of pointers to atom occurrences to
eliminate search).

The major idea used in SATO is to keep two lists of literals: The head
list is a collection of the occurrences of the first literal of each clause,
and the tail list is a collection of the occurrences of the last literal of each
clause. If the first literal of a clause becomes true, that literal is simply
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12 HANTAO ZHANG and MARK STICKEL

removed from the head list. If that literal becomes false, it is removed
from the head list, and we search for the next unassigned literal in the
clause and add it to the head list, unless one of the following occurs:
(a) if a literal with value true is found during the search process, no
literal will be added to the head list since the clause was subsumed by
a previous assignment; (b) if every literal in the clause has value false,
then a null clause has been found and that information is returned; (c)
if the next unassigned literal of the clause is also in the tail list, then a
unit clause has been found and that literal is collected in a list of “unit
clauses”. The handling of literals in the tail list is analogous.

The idea implies that a clause should be represented as a double-
linked list. When the trie data structure is used, a literal is repre-
sented by a trie node together with an edge from a node to its par-
ent. That is, instead of the data structure 〈var, pos, neg, rest〉, we use
〈var, pos, neg, rest, parent〉, where parent is the parent of the current
node.

For efficiency, both the head list and tail list are grouped according
to the variable index of each node. That is, we use a variable table
in which we not only record the value of each variable (true, false, or
unknown), but also a head list and a tail list of nodes whose label is that
variable. Initially, each head list contains at most one node. Whenever
a variable’s value goes from unknown to true (resp. false), we remove
each node in the head list of this variable and try to add the negative
(resp. positive) child node — together with its brothers — into the
head list. We also remove each node in the tail list of this variable; if
its negative (resp. positive) child is equivalent to , we try to add its
parent node into the tail list.

The first version of SATO does not use the tail list and thus does
not need the parent link in the trie data structure. While this imple-
mentation does not need dynamic memory allocation, our experiments
indicate that more than half of the total search time is spent on deciding
whether a trie is equivalent to — this operation is necessary to locate
unit clauses and to select literals for splitting. This is because not every
node with an interpreted variable is removed from the trie. For example,
the clause x ∨ y is represented by Tc = 〈x, 〈y, , nil, nil〉, nil〉, which is
initially stored in the head list of variable x. Now suppose y has value
false; then in our implementation, 〈y, , nil, nil〉 will not be replaced
by . To decide that x is in a unit clause, we have to search the whole
Tc.

In Table II, results for two versions of SATO are given — SATO1
uses only the head list and SATO2 uses both the head and tail lists.
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Table II. SATO1 (atoms point to clauses whose
first literal contains it) vs. SATO2 (atoms point to
clauses whose first or last literal contains it).

SATO1 SATO2
Problem Branches (sec) (sec)

QG1.7 958 1.20 0.53
.8 590624 4328.93 283.10

QG2.7 672 1.05 0.49
.8 579624 3698.32 228.32

QG3.8 1016 1.46 0.28
.9 82405 121.39 12.02

QG4.8 910 0.97 0.20
.9 59514 93.31 12.08

QG5.9 188 0.81 0.24
.11 12581 211.03 18.32
.12 139582 6923.66 377.14
.13 1798177 137902.56 10099.64

QG6.9 52 0.77 0.15
.10 314 2.61 0.34
.11 2523 47.10 3.70
.12 26848 953.59 63.23

QG7.9 42 0.68 0.14
.10 817 2.44 0.47
.11 11617 32.57 10.25
.12 159908 2580.45 412.21
.13 2351662 160396.05 13908.68

The experimental results indicate that SATO2 is substantially faster
than SATO1 on quasigroup problems. The times in Tables II and III
were collected on an SGI Onyx R10000 processor (196 MHz) with 256
MB memory. SATO is written in C.
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7.1. Complexity Analysis

In the following, we show that the technique implemented in SATO2
for unit propagation is better, both theoretically and practically, than
the method of LDPP.

The Davis–Putnam method as given in Figure 1 consists of two
major operations: unit propagation and splitting. The unit propagation
consists of a sequence of unit propagation operations. For any mod-
erate satisfiability problem, thousands of the splitting operations will
be performed, and each splitting will invoke unit propagation. Other
things being equal, the complexity of the Satisfiable procedure depends
on that of unit propagation. In the following, we concentrate on the
complexity of unit propagation.

Given a set S of input clauses and any variable v, let Pv be the
number of clauses of S in which v appears positively, and let Nv be
the number of clauses in which v appears negatively. It is easy to see
that for LDPP, the complexity of the unit propagation operation is
O(Pv + Nv) when v receives a value, either true or false.

We show below that the unit propagation operation in SATO takes
an amortized time of O(Nv) when v is assigned to true and O(Pv) when
v is assigned to false. To facilitate understanding, we may assume that
each clause is represented by a double-linked list, even though the trie
data structure gives better results. We also assume that a literal cannot
be in both the head list and the tail list: if this is the case, we remove
it from both lists and add it to the unit-clause list.

Suppose x is assigned true and the number of x literals in the head
list is Hx. We need to perform Hx operations to add those literals
that follow x in each of Hx clauses to the head list. Recall that in our
implementation, not every node with an interpreted variable is removed
from the trie. Because of this, when the first literal (i.e., x) of a clause
becomes false, adding the next (unassigned) literal of the clause to the
head list does not always take constant time: If the next literal has
value false, we have to pass by this literal and so on, until we find a
literal whose value is true or unassigned, or until no literal is left in the
current clause.

That is, if k literals are passed by in the adding process, the com-
plexity of adding the next literal to the head list will be O(k) and
the worst complexity would be O(k ∗ Hx). However, if y is passed by
because y was assigned true earlier, then this y is not in the head list at
the time when y was assigned true. Hence, we can distribute the cost
of passing y to that of assigning y to true (i.e., O(Ny)). After this kind
of distribution, the cost of adding the next literal following each x in
the head list is constant.
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The case when x appears in the tail list is handled similarly. In short,
the cost of assigning x to true, O(Nx), consists of two parts: the cost
of visiting each x literal in the head and tail lists and the cost prepaid
for passing x literals neither in the head list nor in the tail list. Note
that not every x in the clause set has to be visited when assigning x to
true, i.e., O(Nx) is a generous upper bound.

The above complexity analysis also applies when x is assigned false.
When the set of clauses is represented by a trie, the number of x literals
in the head list, Hx, in the above analysis can be replaced by the number
of the corresponding trie nodes (which is usually smaller than HNv).
However, we cannot say that the amortized complexity of assigning
x to true is bounded by the number of the trie nodes representing x
because, when assigning x to true, a trie node representing x may be
visited more than once while an occurrence of x is visited at most once
when clauses are represented by double-linked lists.

7.2. Experimental Comparison of Two Algorithms

While the theoretical analysis shows that SATO’s method has an ad-
vantage over LDPP’s, it also appears to perform better in practice (see
Tables I and II). Because it is difficult to make accurate comparisons
across different implementations in different languages, for purposes of
comparison, we also carefully implemented LDPP’s algorithm, which
is similar to Crawford and Auton’s method, in SATO. We discuss be-
low the two key ideas that can be borrowed from SATO to improve
on LDPP: (a) using a trie for clauses and (b) eliminating using unit
subsumption.

7.2.1. Using Trie for Clauses
Using tries can automatically remove some subsumed clauses (includ-
ing duplicates). LDPP and Crawford and Auton’s method can take
advantage of this. To test this idea, we implemented two versions of
LDPP’s algorithm in SATO: in SATO1.2, each clause is represented by
a single linked list of integers; in SATO1.3, the trie data structure is
used and each clause is represented by a path from a leaf to the root of
a trie. Table III lists the results for SATO1.2 and SATO1.3. SATO1.3
always takes less time than SATO1.2 to finish the job. This is in part
because the trie data structure eliminates duplicate clauses. Actually, it
automatically deletes a class of subsumed clauses, that is, those clauses
one of whose prefixes (regarding a clause as a list) is also a clause in
the system.
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Table III. SATO1.2 (list representation) vs. SATO1.3 (trie represen-
tation).

SATO1.2 SATO1.3
Problem Branches Create Total Create Total

(sec) (sec) (sec) (sec)

QG1.7 958 0.38 1.29 0.38 0.68
.8 590624 0.85 2084.10 0.86 408.93

QG2.7 672 0.39 1.05 0.39 0.64
.8 579624 0.85 2293.32 0.91 328.45

QG3.8 1016 0.05 0.46 0.05 0.32
.9 82405 0.08 36.26 0.08 24.29

QG4.8 910 0.05 0.39 0.05 0.28
.9 59514 0.08 27.70 0.08 18.26

QG5.9 188 0.14 0.31 0.14 0.26
.10 1454 0.22 2.51 0.23 1.57
.11 12581 0.32 50.03 0.35 23.45
.12 139582 0.46 1317.66 0.54 490.96
.13 1798177 0.64 29901.56 0.79 11167.84

QG6.9 52 0.11 0.17 0.11 0.17
.10 314 0.17 0.61 0.17 0.51
.11 2523 0.25 6.59 0.27 5.05
.12 26848 0.35 163.88 0.41 113.37

QG7.9 42 0.11 0.15 0.11 0.17
.10 817 0.17 1.09 0.17 0.77
.11 11617 0.25 31.48 0.27 19.30
.12 159908 0.35 1241.95 0.42 571.83
.13 2351662 0.49 57294.93 0.63 18495.21

It might appear that creating a trie for a set of clauses would be
appreciably more expensive than creating lists of lists of literals. In
fact, both operations have the same theoretical complexity. In practice,
creating a list is slightly faster than creating a trie, as indicated by the
creation times in Table III. The creation times for SATO1 and SATO2
are the same as those of SATO1.3.

davis16.tex; 22/03/2000; 11:19; p.16



Implementing the Davis–Putnam Method 17

7.2.2. Eliminating Unit Subsumption
The Davis–Putnam method performs unit resolution and unit sub-
sumption operations. These are done in LDPP by decrementing literal
counts for unit resolutions and setting a subsumed flag for unit sub-
sumptions. Every assignment to a variable requires examining and
possibly modifying every clause that contain the variable. A key issue in
SATO is that only unit resolutions are performed, so only occurrences
with one polarity or the other are examined.

This idea can be applied to LDPP by eliminating the use of the
subsumed field. There are some extra costs: counts for resolved literals
are decremented for subsumed clauses as well as unsubsumed ones,
derived units might already be assigned a (subsuming) value and must
be ignored, and subsumed clauses must be ignored by the process for
selecting literals to split on. Despite these extra costs, there is substan-
tial benefit to omitting the subsumption operation. LDPP′ is LDPP
modified to eliminate the subsumption operations. As can be seen from
Table I, it is appreciably faster than LDPP on quasigroup problems.

8. Conclusions

In this paper, we have concentrated on the use of the trie data structure
and other refinements for implementing the Davis–Putnam method.
Seven implementations of the Davis–Putnam method with their per-
formance results on some quasigroup problems are presented: DDPP,
LDPP, LDPP′, SATO1, SATO2, SATO1.2, SATO1.3. Table 7.2.2 sum-
marizes the characteristics of the different programs described here.

We conclude the following:

− The trie representation for clause sets is more efficient than the
list representation (e.g., SATO1.3 vs. SATO1.2).

− Using lists of pointers to occurrences of atoms in clauses and
reversible destructive updating is faster than using the DDPP’s
nondestructive trie-merge operation (e.g., SATO1.3 vs. DDPP).

− Eliminating the unit subsumption operation can improve perfor-
mance (e.g., LDPP′ vs. LDPP).
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Table IV. Summary of program characteristics (R: representation; US: unit
subsumption).

Program R How Resolvable Literals Are Found US

DDPP trie
search trie; uses trie-merge operation
instead of destructive operations like
the other programs

yes

SATO1.3 trie atom points to clauses that contain it yes

SATO1.2
& LDPP

list atom points to clauses that contain it yes

LDPP′ list atom points to clauses that contain it no

SATO1 trie atom points to clauses whose first active literal
contains it

no

SATO2 trie atom points to clauses whose first or last active
literal contains it

no

− Restricting the unit resolution operation to operate only on clauses
whose first or last literal contains the atom can improve perfor-
mance (no single factor comparison was made, but see SATO2
vs. LDPP′ and SATO1.3; SATO2 vs. SATO1 shows the benefit of
considering first and last literals instead of just first literals).

We have proposed a new method for efficiently implementing unit
propagation in the Davis–Putnam method. We showed that this new
method, used in SATO2, is better, both theoretically and practically,
than the approach used in LDPP and many other systems. That ap-
proach appeared earlier in Dowling and Gallier’s linear algorithm for
satisfiability of Horn clauses [6]. We think our ideas can be used to
design a new sublinear algorithm for the satisfiability of Horn clauses.

davis16.tex; 22/03/2000; 11:19; p.18



Implementing the Davis–Putnam Method 19

Table V. DDPP and LDPP′ with standard literal selection strategy: a literal
of a shortest positive clause is chosen for splitting; search is halted after
finding a model in satisfiable cases (marked by *).

DDPP LDPP′

Problem Branches Search Total Branches Search Total
(sec) (sec) (sec) (sec)

QG1.7* 11 0.2 7.5 11 0.1 7.0
.8* 57421 640 658 39349 309 327

QG2.7* 5 0.2 8.3 45 0.4 10
.8* 50721 541 560 4405 48 69

QG3.8* 379 2.8 3.8 403 0.3 0.9
.9 26847 280 281 24673 25 26

QG4.8 564 4.3 5.2 602 0.4 1.6
.9* 450 6.0 7.5 904 0.9 1.8

QG5.9 15 0.6 3.7 15 0.1 2.2
.10 50 3.1 9.1 38 0.2 4.1

.11* 94 12 21 80 0.5 6.5
.12 443 70 84 369 2.9 11
.13 16438 2802 2826 12686 123 139

QG6.9* 4 0.5 2.7 12 0.0 1.5
.10 65 2.5 7.0 59 0.1 3.2
.11 451 27 35 539 2.1 7.1
.12 5938 564 576 7288 38 43

QG7.9* 1 0.2 2.5 1 0.0 1.9
.10 40 1.6 5.7 40 0.1 4.2
.11 321 24 31 294 1.2 5.5
.12 2083 219 231 1592 7.6 13

.13* 30 7.2 26 205 1.5 11

Many aspects of the Davis–Putnam method are not addressed in this
paper. To facilitate comparison, all of our programs use the same input
and simply choose the minimally indexed variable not yet assigned a
value for splitting in the Davis–Putnam method. Many selection heuris-
tics can be efficiently implemented using the trie data structure; we
ignore this because it is outside the scope of this paper. Our programs
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Table VI. SATO and MACE with standard literal selection strategy: a lit-
eral of a shortest positive clause is chosen for splitting; search is halted after
finding a model in satisfiable cases (marked by *).

SATO MACE [12]
Problem Branches Search Total Branches Search Total

(sec) (sec) (sec) (sec)

QG1.7* 85 0.1 0.6 16 0.2 2.0
.8* 40755 29 30 39357 63 67

QG2.7* 33 0.0 0.7 53 0.2 2.1
.8* 28155 29 30 4410 11 15

QG3.8* 239 0.1 0.2 408 0.2 0.4
.9 20340 10 10 24763 14 14

QG4.8 924 0.3 0.4 602 0.2 0.4
.9* 54 0.0 0.2 913 0.5 0.8

QG5.9 15 0.1 0.3 15 0.1 0.7
.10 38 0.1 0.5 38 0.1 1.1

.11* 41 0.2 0.7 82 0.4 1.8
.12 354 1.6 2.4 369 1.7 3.7
.13 12781 65 66 12686 79 82

QG6.9* 9 0.0 0.2 13 0.0 0.5
.10 65 0.1 0.4 59 0.1 0.8
.11 625 1.2 1.7 539 1.0 2.1
.12 7270 18 19 7288 20 22

QG7.9* 6 0.0 0.2 3 0.0 0.5
.10 42 0.1 0.4 40 0.1 0.8
.11 324 0.7 1.1 294 0.6 1.6
.12 1642 4.4 5 1592 3.7 5.2

.13* 22801 81 81 210 1.0 3.0

do not perform general subsumption checking; it would be interesting to
see how de Kleer’s subsumption algorithm on tries could be integrated
into the Davis–Putnam method. We did little or no checking for pure
literals and did not check for symmetries. Further research is needed
to see how such operations can be done efficiently using the trie data
structure.
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Table VII. POSIT, SATZ, NTAB: default settings; search is halted after finding a model in
satisfiable cases (marked by *).

POSIT [7] SATZ [11] NTAB [2]
Problem Branches Search Total Branches Total Branches Total

(sec) (sec) (sec) (sec)

QG1.7* 6 0.0 3.0 7 33 75 3.4
.8* 5151 34 40 7770 218 2346 106

QG2.7* 21 0.1 3.0 10 53 12 2.5
.8* 5761 41 47 6975 270 4009 207

QG3.8* 49 0.2 0.6 221 1.2 6 0.3
.9 4803 19 19 8083 33 4585 59

QG4.8 113 0.3 0.7 255 1.5 104 1.0
.9* 63 0.2 0.9 585 3.6 134 2.0

QG5.9 1 0.1 1.2 3 6.2 4 0.9
.10 ? ? fault 29 12 19 2.8

.11* ? ? fault 12 18 15 4.3
.12 ? ? fault 199 47 ? >13000
.13 6361 310 315 ? >18000 ? >2700

QG6.9* ? ? fault 6 3.0 12 0.8
.10 55 0.7 2.1 60 6.0 77 3.3
.11 ? ? fault 462 22 1714 117
.12 ? ? fault 6623 318 ? >2700

QG7.9* ? ? >2700 1 3.9 3 0.7
.10 15 0.2 1.6 3 6.6 16 1.4
.11 205 2.3 4.4 119 15 258 18
.12 ? ? fault 1116 70 1745 156

.13* ? ? fault 2969 244 ? >2700

Finally, we conclude the paper with statistics comparing DDPP,
LDPP′, and SATO with four other powerful SAT solvers: MACE [12],
POSIT [7], SATZ [11], and NTAB [2] (Tables V, VI, and VII).3 DDPP
and LDPP are written in Common Lisp; all the others are written
in C. We succeeded in solving all the problems only with our solvers
and MACE. McCune’s MACE uses data structures similar to those

3 The data for these tables were collected on a 200 MHz Pentium Pro processor
with 128 MB memory.
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of LDPP, the same “choose an atom of a shortest positive clause”
literal selection strategy as our solvers and has also been used to solve
open quasigroup existence problems. We believe the other systems are
competent to solve these problems with some adjustment, but the
tables illustrate the nontriviality of the problems and that superior
performance is not automatically and immediately transferrable be-
tween problem domains.4 We welcome readers to try these quasigroup
problems — and harder ones, many still open — using their systems.

Appendix

The CSPLib problem library (http://csplib.cs.strath.ac.uk) con-
tains the Common Lisp quasigroup problem generator used for this
paper and an ILOG Solver generator. The code for SATO is available
from http://cs.uiowa.edu/∼hzhang/sato/. SATO (full version) can
be used to generate clauses for the quasigroup problems presented in
this paper. For instance, the command sato -Q5 -G9 -o will generate
QG5.9 in Lisp format, while sato -Q3 -G10 -o2 will generate QG3.10
in DIMACS format.
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